@article{TMF_2023_217_2_a6,
author = {F. M. Al-Askar},
title = {The~impact of {the~Wiener} process on solutions of the~potential {Yu{\textendash}Toda{\textendash}Sasa{\textendash}Fukuyama} equation in a~two-layer liquid},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {348--357},
year = {2023},
volume = {217},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a6/}
}
TY - JOUR AU - F. M. Al-Askar TI - The impact of the Wiener process on solutions of the potential Yu–Toda–Sasa–Fukuyama equation in a two-layer liquid JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 348 EP - 357 VL - 217 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a6/ LA - ru ID - TMF_2023_217_2_a6 ER -
%0 Journal Article %A F. M. Al-Askar %T The impact of the Wiener process on solutions of the potential Yu–Toda–Sasa–Fukuyama equation in a two-layer liquid %J Teoretičeskaâ i matematičeskaâ fizika %D 2023 %P 348-357 %V 217 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a6/ %G ru %F TMF_2023_217_2_a6
F. M. Al-Askar. The impact of the Wiener process on solutions of the potential Yu–Toda–Sasa–Fukuyama equation in a two-layer liquid. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 348-357. http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a6/
[1] M. Wang, X. Li, J. Zhang, “The $\bigl(\frac{G'}{G}\bigr)$-expansion method and evolution equation in mathematical physics”, Phys. Lett. A, 372:4 (2008), 417–423 | DOI | MR
[2] H. Zhang, “New application of the $\bigl(\frac{G'}{G}\bigr)$-expansion method”, Commun. Nonlinear Sci. Numer. Simul., 14:8 (2009), 3220–3225 | DOI
[3] Z. Yan, “Abundant families of Jacobi elliptic function solutions of the ($2+1$)-dimensional integrable Davey–Stewartson-type equation via a new method”, Chaos Solitons Fractals, 18:2 (2003), 299–309 | DOI | MR
[4] S. Albosaily, W. W. Mohammed, A. E. Hamza, M. El-Morshedy, H. Ahmad, “The exact solutions of the stochastic fractional-space Allen–Cahn equation”, Open Phys., 20:1 (2022), 23–29 | DOI
[5] W. Malfliet, W. Hereman, “The tanh method. I. Exact solutions of nonlinear evolution and wave equations”, Phys. Scripta, 54:6 (1996), 563–568 | DOI | MR
[6] F. M. Al-Askar, C. Cesarano, W. W. Mohammed, “Multiplicative Brownian motion stabilizes the exact stochastic solutions of the Davey–Stewartson equations”, Symmetry, 14:10 (2022), 2176, 12 pp. | DOI
[7] K. Khan, M. A. Akbar, “The $\exp(-\Phi(\xi))$-expansion method for finding travelling wave solutions of Vakhnenko–Parkes equation”, Internat. J. Dyn. Syst. Differ. Equ., 5:1 (2014), 72–83 | DOI
[8] X.-F. Yang, Z.-C. Deng, Y. Wei, “A Riccati–Bernoulli sub-ODE method for nonlinear partial differential equations and its application”, Adv. Difference Equ., 2015:117 (2015), 117, 17 pp. | DOI | MR
[9] W. W. Mohammed, N. Iqbal, “Impact of the same degenerate additive noise on a coupled system of fractional space diffusion equations”, Fractals, 30:1 (2022), 2240033, 14 pp. | DOI
[10] W. W. Mohammed, C. Cesarano, “The soliton solutions for the ($4+1$)-dimensional stochastic Fokas equation”, Math. Methods Appl. Sci., 46:6 (2022), 7589–7597 | DOI | MR
[11] X. Yang, C. Zhao, J. Cao, “Dynamics of the discrete coupled nonlinear Schrödinger–Boussinesq equations”, Appl. Math. Comput., 219:16 (2013), 8508–8524 | MR
[12] R. Hirota, “Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons”, Phys. Rev. Lett., 27:18 (1971), 1192–1194 | DOI
[13] W. W. Mohammed, “Stochastic amplitude equation for the stochastic generalized Swift–Hohenberg equation”, J. Egyptian Math. Soc., 23:3 (2015), 482–489 | DOI | MR
[14] P. Imkeller, A. H. Monahan, “Conceptual stochastic climate models”, Stoch. Dynam., 2:3 (2002), 311–326 | DOI
[15] F. M. Al-Askar, W. W. Mohammed, E. S. Aly, M. EL-Morshedy, “Exact solutions of the stochastic Maccari system forced by multiplicative noise”, ZAMM J. Appl. Math. Mech., 103:5 (2023), e202100199, 12 pp. | DOI | MR
[16] W. W. Mohammed, F. M. Al-Askar, C. Cesarano, “The analytical solutions of the stochastic mKdV equation via the mapping method”, Mathematics, 10:22 (2022), 4212, 9 pp. | DOI
[17] F. M. Al-Askar, W. W. Mohammed, “The analytical solutions of the stochastic fractional RKL equation via Jacobi elliptic function method”, Adv. Math. Phys., 2022 (2022), 1534067, 8 pp. | DOI | MR
[18] F. M. Al-Askar, C. Cesarano, W. W. Mohammed, “The influence of white noise and the beta derivative on the solutions of the BBM equation”, Axioms, 12:5 (2023), 447, 12 pp. | DOI
[19] S.-J. Yu, K. Toda, N. Sasa, T. Fukuyama, “$N$ soliton solutions to the Bogoyavlenskii–Schiff equation and a quest for the soliton solution in ($3+1$) dimensions”, J. Phys. A: Math. Gen., 31:14 (1998), 3337–3347 | DOI | MR
[20] Z. Yan, “New families of nontravelling wave solutions to a new ($3+1$)-dimensional potential-YTSF equation”, Phys. Lett. A, 318:1–2 (2003), 78–83 | DOI | MR
[21] H.-M. Yin, B. Tian, J. Chai, X.-Y. Wu, W.-R. Sun, “Solitons and bilinear Bäcklund transformations for a ($3+1$)-dimensional Yu–Toda–Sasa–Fukuyama equation in a liquid or lattice”, Appl. Math. Lett., 58 (2016), 178–183 | DOI | MR
[22] Y. J. Hu, H. L. Chen, Z. D. Dai, “New kink multi-soliton solutions for the ($3+1$)-dimensional potential-Yu–Toda–Sasa–Fukuyama equation”, Appl. Math. Comput., 234 (2014), 548–556 | DOI | MR
[23] W. Tan, Z. D. Dai, “Dynamics of kinky wave for ($3+1$)-dimensional potential Yu–Toda–Sasa–Fukuyama equation”, Nonlinear Dyn., 85:2 (2016), 817–823 | DOI | MR
[24] A.-M. Wazwaz, “Multiple-soliton solutions for the Calogero–Bogoyavlenskii–Schiff, Jimbo–Miwa and YTSF equations”, Appl. Math. Comput., 203:2 (2008), 592–597 | DOI | MR
[25] T. Fang, Y.-H. Wang, “Lump-stripe interaction solutions to the potential Yu–Toda–Sasa–Fukuyama equation”, Anal. Math. Phys., 9:3 (2019), 1481–1495 | DOI | MR
[26] T.-X. Zhang, H.-N. Xuan, D.-F. Zhang, C.-J. Wang, “Non-travelling wave solutions to a ($3+1$)-dimensional potential-YTSF equation and a simplified model for reacting mixtures”, Chaos Solitons Fractals, 34:3 (2007), 1006–1013 | DOI | MR
[27] S. Zhang, H.-Q. Zhang, “A transformed rational function method for ($3+1$)-dimensional potential Yu–Toda–Sasa–Fukuyama equation”, Pramana J. Phys., 76:4 (2011), 561–571 | DOI
[28] H.-O. Roshid, M. A. Akbar, M. N. Alam, M. F. Hoque, N. Rahman, “New extended $(G'/G)$-expansion method to solve nonlinear evolution equation: the ($3+1$)-dimensional potential-YTSF equation”, SpringerPlus, 3 (2014), 122, 6 pp. | DOI
[29] F. M. Al-Askar, C. Cesarano, W. W. Mohammed, “Abundant solitary wave solutions for the Boiti–Leon–Manna–Pempinelli equation with M-truncated derivative”, Axioms, 12:5 (2023), 466, 10 pp. | DOI
[30] J.-H. He, “Variational principles for some nonlinear partial differential equations with variable coefficients”, Chaos Solitons Fractals, 19:4 (2004), 847–851 | DOI | MR
[31] J.-H. He, “Some asymptotic methods for strongly nonlinear equations”, Internat. J. Modern Phys. B, 20:10 (2006), 1141–1199 | DOI | MR
[32] Y.-H. Ye, L.-F. Mo, “He's variational method for the Benjamin–Bona–Mahony equation and the Kawahara equation”, Comput. Math. Appl., 58:11–12 (2009), 2420–2422 | DOI | MR