The impact of the Wiener process on solutions of the potential Yu–Toda–Sasa–Fukuyama equation in a two-layer liquid
Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 348-357 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the $(3+1)$-dimensional stochastic potential Yu–Toda–Sasa–Fukuyama equation (SPYTSFE) forced in the Itô sense by a multiplicative Wiener process. To obtain trigonometric, hyperbolic, and rational SPYTSFE solutions, we use the Riccati–Bernoulli sub-ODE and He's semiinverse methods. The SPYTSFE may explain many exciting physical phenomena because it relates to nonlinear waves and solitons in dispersive media, plasma physics, and fluid dynamics. We show how the Wiener process affects the exact SPYTSFE solutions by introducing several 2D and 3D graphs.
Keywords: stochastic Yu–Toda–Sasa–Fukuyama equation, Riccati–Bernoulli sub-ODE method, exact stochastic solutions.
@article{TMF_2023_217_2_a6,
     author = {F. M. Al-Askar},
     title = {The~impact of {the~Wiener} process on solutions of the~potential {Yu{\textendash}Toda{\textendash}Sasa{\textendash}Fukuyama} equation in a~two-layer liquid},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {348--357},
     year = {2023},
     volume = {217},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a6/}
}
TY  - JOUR
AU  - F. M. Al-Askar
TI  - The impact of the Wiener process on solutions of the potential Yu–Toda–Sasa–Fukuyama equation in a two-layer liquid
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 348
EP  - 357
VL  - 217
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a6/
LA  - ru
ID  - TMF_2023_217_2_a6
ER  - 
%0 Journal Article
%A F. M. Al-Askar
%T The impact of the Wiener process on solutions of the potential Yu–Toda–Sasa–Fukuyama equation in a two-layer liquid
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 348-357
%V 217
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a6/
%G ru
%F TMF_2023_217_2_a6
F. M. Al-Askar. The impact of the Wiener process on solutions of the potential Yu–Toda–Sasa–Fukuyama equation in a two-layer liquid. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 348-357. http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a6/

[1] M. Wang, X. Li, J. Zhang, “The $\bigl(\frac{G'}{G}\bigr)$-expansion method and evolution equation in mathematical physics”, Phys. Lett. A, 372:4 (2008), 417–423 | DOI | MR

[2] H. Zhang, “New application of the $\bigl(\frac{G'}{G}\bigr)$-expansion method”, Commun. Nonlinear Sci. Numer. Simul., 14:8 (2009), 3220–3225 | DOI

[3] Z. Yan, “Abundant families of Jacobi elliptic function solutions of the ($2+1$)-dimensional integrable Davey–Stewartson-type equation via a new method”, Chaos Solitons Fractals, 18:2 (2003), 299–309 | DOI | MR

[4] S. Albosaily, W. W. Mohammed, A. E. Hamza, M. El-Morshedy, H. Ahmad, “The exact solutions of the stochastic fractional-space Allen–Cahn equation”, Open Phys., 20:1 (2022), 23–29 | DOI

[5] W. Malfliet, W. Hereman, “The tanh method. I. Exact solutions of nonlinear evolution and wave equations”, Phys. Scripta, 54:6 (1996), 563–568 | DOI | MR

[6] F. M. Al-Askar, C. Cesarano, W. W. Mohammed, “Multiplicative Brownian motion stabilizes the exact stochastic solutions of the Davey–Stewartson equations”, Symmetry, 14:10 (2022), 2176, 12 pp. | DOI

[7] K. Khan, M. A. Akbar, “The $\exp(-\Phi(\xi))$-expansion method for finding travelling wave solutions of Vakhnenko–Parkes equation”, Internat. J. Dyn. Syst. Differ. Equ., 5:1 (2014), 72–83 | DOI

[8] X.-F. Yang, Z.-C. Deng, Y. Wei, “A Riccati–Bernoulli sub-ODE method for nonlinear partial differential equations and its application”, Adv. Difference Equ., 2015:117 (2015), 117, 17 pp. | DOI | MR

[9] W. W. Mohammed, N. Iqbal, “Impact of the same degenerate additive noise on a coupled system of fractional space diffusion equations”, Fractals, 30:1 (2022), 2240033, 14 pp. | DOI

[10] W. W. Mohammed, C. Cesarano, “The soliton solutions for the ($4+1$)-dimensional stochastic Fokas equation”, Math. Methods Appl. Sci., 46:6 (2022), 7589–7597 | DOI | MR

[11] X. Yang, C. Zhao, J. Cao, “Dynamics of the discrete coupled nonlinear Schrödinger–Boussinesq equations”, Appl. Math. Comput., 219:16 (2013), 8508–8524 | MR

[12] R. Hirota, “Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons”, Phys. Rev. Lett., 27:18 (1971), 1192–1194 | DOI

[13] W. W. Mohammed, “Stochastic amplitude equation for the stochastic generalized Swift–Hohenberg equation”, J. Egyptian Math. Soc., 23:3 (2015), 482–489 | DOI | MR

[14] P. Imkeller, A. H. Monahan, “Conceptual stochastic climate models”, Stoch. Dynam., 2:3 (2002), 311–326 | DOI

[15] F. M. Al-Askar, W. W. Mohammed, E. S. Aly, M. EL-Morshedy, “Exact solutions of the stochastic Maccari system forced by multiplicative noise”, ZAMM J. Appl. Math. Mech., 103:5 (2023), e202100199, 12 pp. | DOI | MR

[16] W. W. Mohammed, F. M. Al-Askar, C. Cesarano, “The analytical solutions of the stochastic mKdV equation via the mapping method”, Mathematics, 10:22 (2022), 4212, 9 pp. | DOI

[17] F. M. Al-Askar, W. W. Mohammed, “The analytical solutions of the stochastic fractional RKL equation via Jacobi elliptic function method”, Adv. Math. Phys., 2022 (2022), 1534067, 8 pp. | DOI | MR

[18] F. M. Al-Askar, C. Cesarano, W. W. Mohammed, “The influence of white noise and the beta derivative on the solutions of the BBM equation”, Axioms, 12:5 (2023), 447, 12 pp. | DOI

[19] S.-J. Yu, K. Toda, N. Sasa, T. Fukuyama, “$N$ soliton solutions to the Bogoyavlenskii–Schiff equation and a quest for the soliton solution in ($3+1$) dimensions”, J. Phys. A: Math. Gen., 31:14 (1998), 3337–3347 | DOI | MR

[20] Z. Yan, “New families of nontravelling wave solutions to a new ($3+1$)-dimensional potential-YTSF equation”, Phys. Lett. A, 318:1–2 (2003), 78–83 | DOI | MR

[21] H.-M. Yin, B. Tian, J. Chai, X.-Y. Wu, W.-R. Sun, “Solitons and bilinear Bäcklund transformations for a ($3+1$)-dimensional Yu–Toda–Sasa–Fukuyama equation in a liquid or lattice”, Appl. Math. Lett., 58 (2016), 178–183 | DOI | MR

[22] Y. J. Hu, H. L. Chen, Z. D. Dai, “New kink multi-soliton solutions for the ($3+1$)-dimensional potential-Yu–Toda–Sasa–Fukuyama equation”, Appl. Math. Comput., 234 (2014), 548–556 | DOI | MR

[23] W. Tan, Z. D. Dai, “Dynamics of kinky wave for ($3+1$)-dimensional potential Yu–Toda–Sasa–Fukuyama equation”, Nonlinear Dyn., 85:2 (2016), 817–823 | DOI | MR

[24] A.-M. Wazwaz, “Multiple-soliton solutions for the Calogero–Bogoyavlenskii–Schiff, Jimbo–Miwa and YTSF equations”, Appl. Math. Comput., 203:2 (2008), 592–597 | DOI | MR

[25] T. Fang, Y.-H. Wang, “Lump-stripe interaction solutions to the potential Yu–Toda–Sasa–Fukuyama equation”, Anal. Math. Phys., 9:3 (2019), 1481–1495 | DOI | MR

[26] T.-X. Zhang, H.-N. Xuan, D.-F. Zhang, C.-J. Wang, “Non-travelling wave solutions to a ($3+1$)-dimensional potential-YTSF equation and a simplified model for reacting mixtures”, Chaos Solitons Fractals, 34:3 (2007), 1006–1013 | DOI | MR

[27] S. Zhang, H.-Q. Zhang, “A transformed rational function method for ($3+1$)-dimensional potential Yu–Toda–Sasa–Fukuyama equation”, Pramana J. Phys., 76:4 (2011), 561–571 | DOI

[28] H.-O. Roshid, M. A. Akbar, M. N. Alam, M. F. Hoque, N. Rahman, “New extended $(G'/G)$-expansion method to solve nonlinear evolution equation: the ($3+1$)-dimensional potential-YTSF equation”, SpringerPlus, 3 (2014), 122, 6 pp. | DOI

[29] F. M. Al-Askar, C. Cesarano, W. W. Mohammed, “Abundant solitary wave solutions for the Boiti–Leon–Manna–Pempinelli equation with M-truncated derivative”, Axioms, 12:5 (2023), 466, 10 pp. | DOI

[30] J.-H. He, “Variational principles for some nonlinear partial differential equations with variable coefficients”, Chaos Solitons Fractals, 19:4 (2004), 847–851 | DOI | MR

[31] J.-H. He, “Some asymptotic methods for strongly nonlinear equations”, Internat. J. Modern Phys. B, 20:10 (2006), 1141–1199 | DOI | MR

[32] Y.-H. Ye, L.-F. Mo, “He's variational method for the Benjamin–Bona–Mahony equation and the Kawahara equation”, Comput. Math. Appl., 58:11–12 (2009), 2420–2422 | DOI | MR