Discretization of the modified Korteweg–de Vries–sine Gordon equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 329-347 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We provide an integrable discretization of the modified Korteweg–de Vries–sine Gordon equation. The discrete form is a coupled system and is derived via the Cauchy matrix approach by introducing suitable discrete plane wave factors. Solutions and a Lax pair are constructed in this approach. The dynamics of some solutions are illustrated. The modified Korteweg–de Vries–sine Gordon equation is recovered in the continuum limit.
Keywords: modified Korteweg–de Vries–sine Gordon equation, Cauchy matrix approach, continuum limit.
Mots-clés : solution, Lax pair
@article{TMF_2023_217_2_a5,
     author = {Aye Aye Cho and Jing Wang and Da-jun Zhang},
     title = {Discretization of the~modified {Korteweg{\textendash}de} {Vries{\textendash}sine} {Gordon} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {329--347},
     year = {2023},
     volume = {217},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a5/}
}
TY  - JOUR
AU  - Aye Aye Cho
AU  - Jing Wang
AU  - Da-jun Zhang
TI  - Discretization of the modified Korteweg–de Vries–sine Gordon equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 329
EP  - 347
VL  - 217
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a5/
LA  - ru
ID  - TMF_2023_217_2_a5
ER  - 
%0 Journal Article
%A Aye Aye Cho
%A Jing Wang
%A Da-jun Zhang
%T Discretization of the modified Korteweg–de Vries–sine Gordon equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 329-347
%V 217
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a5/
%G ru
%F TMF_2023_217_2_a5
Aye Aye Cho; Jing Wang; Da-jun Zhang. Discretization of the modified Korteweg–de Vries–sine Gordon equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 329-347. http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a5/

[1] H. D. Wahlquist, F. B. Estabrook, “Bäcklund transformation for solutions of the Korteweg–de Vries equation”, Phys. Rev. Lett., 31:23 (1973), 1386–1390 | DOI | MR

[2] J. Hietarinta, N. Joshi, F. W. Nijhoff, Discrete Systems and Integrability, Cambridge Univ. Press, Cambridge, 2016 | DOI | MR

[3] F. W. Nijhoff, H. Capel, “The discrete Korteweg–de Vries equation”, Acta Appl. Math., 39:1–3 (1995), 133–158 | DOI | MR

[4] F. W. Nijhoff, G. R. W. Quispel, H. W. Capel, “Direct linearization of nonlinear difference-difference equations”, Phys. Lett. A, 97:4 (1983), 125–128 | DOI | MR

[5] K. Konno, W. Kameyama, H. Sanuki, “Effect of weak dislocation potential on nonlinear wave propagation in anharmonic crystal”, J. Phys. Soc. Japan, 37:1 (1974), 171–176 | DOI

[6] L. Bianchi, “Sulla trasformazione di Bäcklund per le superficie peeudosferiche”, Rom. Acc. L. Rend. Ser. 5, 1:2 (1892), 3–12 | Zbl

[7] H. H. Chen, “General derivation of Bäcklund transformations from inverse scattering problems”, Phys. Rev. Lett., 33:15 (1974), 925–928 | DOI | MR

[8] K. Konno, H. Sanuki, “Bäcklund transformation for equation of motion for nonlinear lattice under weak dislocation potential”, J. Phys. Soc. Japan, 39:1 (1975), 22–24 | DOI | MR

[9] C.-H. Gu, “On the Bäcklund transformations for the generalized hierarchies of compound MKdV–SG equations”, Lett. Math. Phys., 12:1 (1986), 31–41 | DOI | MR

[10] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “Method for solving the sine-Gordon equation”, Phys. Rev. Lett., 30:25 (1973), 1262–1264 | DOI | MR

[11] F. Nijhoff, J. Atkinson, J. Hietarinta, “Soliton solutions for ABS lattice equations: I. Cauchy matrix approach”, J. Phys. A: Math. Theor., 42:40 (2009), 404005, 34 pp. | DOI | MR

[12] R. Hirota, “Nonlinear partial difference equations III; discrete sine-Gordon equation”, J. Phys. Soc. Japan, 43:6 (1977), 2079–2086 | DOI | MR | Zbl

[13] S. J. Orfanidis, “Sine-Gordon equation and nonlinear $\sigma$ model on a lattice”, Phys. Rev. D, 18:10 (1978), 3828–3832 | DOI | MR

[14] V. E. Adler, A. I. Bobenko, Yu. B. Suris, “Classification of integrable equations on quad-graphs: the consistency approach”, Commun. Math. Phys., 233:3 (2003), 513–543 | DOI | MR

[15] D.-J. Zhang, S.-L. Zhao, “Solutions to ABS lattice equations via generalized Cauchy matrix approach”, Stud. Appl. Math., 131:1 (2013), 72–103 | DOI | MR

[16] D.-D. Xu, D.-J. Zhang, S.-L. Zhao, “The Sylvester equation and integrable equations: I. The Korteweg–de Vries system and sine-Gordon equation”, J. Nonlinear Math. Phys., 21:3 (2014), 382–406 | DOI | MR

[17] S.-L. Zhao, “A discrete negative AKNS equation: generalized Cauchy matrix approach”, J. Nonlinear Math. Phys., 23:4 (2016), 544–562 | DOI | MR

[18] A. A. Cho, M. Mesfun, D.-J. Zhang, “A revisit to the ABS H2 equation”, SIGMA, 17 (2021), 093, 19 pp. | MR

[19] S. S. Li, C. Z. Qu, X. X. Yi, D.-J. Zhang, “Cauchy matrix approach to the SU(2) self-dual Yang–Mills equation”, Stud. Appl. Math., 148:4 (2022), 1703–1721 | DOI | MR

[20] Mae-Bel Mesfun, Sun-Lin Chzhao, “Metod matrits Koshi dlya poludiskretnykh reshetochnykh uravnenii tipa Kortevega–de Friza”, TMF, 211:1 (2022), 48–64 | DOI | DOI | MR

[21] A. A. Cho, J. Wang, D.-J. Zhang, “A direct approach to the model of few-optical-cycle solitons beyond the slowly varying envelope approximation”, Math. Methods Appl. Sci., 46:8 (2023), 8518–8531 | DOI | MR

[22] D.-Y. Chen, D.-J. Zhang, S.-F. Deng, “The novel multi-soliton solutions of the MKdV–sine Gordon equations”, J. Phys. Soc. Japan, 71:2 (2002), 658–659 | DOI | MR

[23] J. J. Sylvester, “Sur l'équation en matrices $px=xq$”, C. R. Acad. Sci. Paris, 99:2 (1884), 67–71 ; 115–116 | Zbl

[24] H. Leblond, D. Mihalache, “Models of few optical cycle solitons beyond the slowly varying envelope approximation”, Phys. Rep., 523:2 (2013), 61–126 | DOI | MR

[25] S. V. Sazonov, “Sverkhsvetovye elektromagnitnye solitony v neravnovesnykh sredakh”, UFN, 171:6 (2001), 663–677 | DOI | DOI

[26] A. N. Bugay, S. V. Sazonov, “Faster-than-light propagation of electromagnetic solitons in nonequilibrium medium taking account of diffraction”, J. Opt. B: Quantum Semiclass. Opt., 6:7 (2004), 328–335 | DOI

[27] S. V. Sazonov, “O rasprostranenii giperzvukovykh solitonov v deformirovannom paramagnitnom kristalle”, ZhETF, 144:5 (2013), 1016–1035 | DOI

[28] O. M. Braun, Yu. S. Kivshar, “Nonlinear dynamics of the Frenkel–Kontorova model”, Phys. Rep., 306:1–2 (1998), 1–108 | DOI | MR

[29] M. L. Rabelo, “On equations which describe pseudospherical surfaces”, Stud. Appl. Math., 81:3 (1989), 221–248 | DOI | MR