Tau-function of the B-Toda hierarchy
Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 299-316 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We continue the study of the B-Toda hierarchy (the Toda lattice with the constraint of type B), which can be regarded as a discretization of the BKP hierarchy. We introduce the tau function of the B-Toda hierarchy and obtain bilinear equations for it. Examples of soliton tau functions are presented in explicit form.
Keywords: Toda lattice, tau function
Mots-clés : soliton solutions.
@article{TMF_2023_217_2_a3,
     author = {A. V. Zabrodin and V. V. Prokofev},
     title = {Tau-function of {the~B-Toda} hierarchy},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {299--316},
     year = {2023},
     volume = {217},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a3/}
}
TY  - JOUR
AU  - A. V. Zabrodin
AU  - V. V. Prokofev
TI  - Tau-function of the B-Toda hierarchy
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 299
EP  - 316
VL  - 217
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a3/
LA  - ru
ID  - TMF_2023_217_2_a3
ER  - 
%0 Journal Article
%A A. V. Zabrodin
%A V. V. Prokofev
%T Tau-function of the B-Toda hierarchy
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 299-316
%V 217
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a3/
%G ru
%F TMF_2023_217_2_a3
A. V. Zabrodin; V. V. Prokofev. Tau-function of the B-Toda hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 299-316. http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a3/

[1] K. Ueno, K. Takasaki, “Toda lattice hierarchy”, Group Representations and Systems of Differential Equations (University of Tokyo, Japan, December 20–27, 1982), Advanced Studies in Pure Mathematics, 4, ed. K. Okamoto, North-Holland, Amsterdam, 1984, 1–95 | DOI | MR | Zbl

[2] E. Date, M. Kashiwara, M. Jimbo, T. Miwa, “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, Japan, May 13 – 16, 1981), eds. M. Jimbo, T. Miwa, World Sci., Singapore, 1983, 39–119 | MR | Zbl

[3] M. Jimbo, T. Miwa, “Solitons and infinite dimensional Lie algebras”, Publ. Res. Inst. Math. Sci., 19:3 (1983), 943–1001 | DOI | MR | Zbl

[4] I. Krichever, A. Zabrodin, “Toda lattice with constraint of type B”, Phys. D, 453 (2023), 133827, 11 pp., arXiv: 2210.12534 | DOI | MR

[5] S. Grushevsky, I. Krichever, “Integrable discrete Schrödinger equations and a characterization of Prym varieties by a pair of quadrisecants”, Duke Math. J., 152:2 (2010), 317–371 | DOI | MR | Zbl

[6] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “KP hierarchies of orthogonal and symplectic type. Transformation groups for soliton equations VI”, J. Phys. Soc. Japan, 50:11 (1981), 3813–3818 | DOI | MR

[7] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Transformation groups for soliton equations. IV. A new hierarchy of soliton equations of KP-type”, Phys. D, 4:3 (1982), 343–365 | DOI | MR

[8] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Transformation groups for soliton equations. V. Quasiperiodic solutions of the orthogonal KP equation”, Publ. RIMS Kyoto Univ., 18:3 (1982), 1111–1119 | DOI | MR

[9] I. Loris, R. Willox, “Symmetry reductions of the BKP hierarchy”, J. Math. Phys., 40:3 (1999), 1420–1431 | DOI | MR

[10] M.-H. Tu, “On the BKP hierarchy: Additional symmetries, Fay identity and Adler–Shiota–van Moerbeke formula”, Lett. Math. Phys., 81:2 (2007), 93–105 | DOI | MR

[11] A. Dimakis, F. Müller-Hoissen, “BKP and CKP revisited: the odd KP system”, Inverse Problems, 25:4 (2009), 045001, 33 pp., arXiv: 0810.0757 | DOI | MR

[12] A. V. Zabrodin, “Ierarkhii Kadomtseva–Petviashvili tipa B i C”, TMF, 208:1, 15–38 | DOI | DOI

[13] T. Takebe, “Toda lattice hierarchy and conservation laws”, Commun. Math. Phys., 129:2 (1990), 281–318 | DOI | MR

[14] T. Takebe, Lectures on Dispersionless Integrable Hierarchies, Lecture Notes, 2, Research Center for Mathematical Physics, Rikkyo Universty, Tokyo, Japan, 2014

[15] I. Krichever, A. Zabrodin, “Kadomtsev–Petviashvili turning points and CKP hierarchy”, Commun. Math. Phys., 386:3 (2021), 1643–1683, arXiv: 2012.04482 | DOI | MR

[16] T. Miwa, “On Hirota's difference equations”, Proc. Japan Acad. Ser. A, 58:1 (1982), 9–12 | DOI | MR

[17] M. Ishikawa, M. Wakayama, “Minor summation of Pfaffians”, Linear and Multilinear Algebra, 39:3 (1995), 258–305 | DOI | MR

[18] M. Ishikawa, M. Wakayama, “Applications of minor-summation formula. II. Pfaffians and Schur polynomials”, J. Combin. Theory Ser. A, 88:1 (1999), 136–157 | DOI | MR

[19] R. Hirota, “Soliton solutions to the BKP equations. I. The pfaffian technique”, J. Phys. Soc. Japan, 58:7 (1989), 2285–2296 | DOI | MR

[20] S. Tsujimoto, R. Hirota, “Pfaffian representation of solutions to the discrete BKP hierarchy in bilinear form”, J. Phys. Soc. Japan, 65:9 (1996), 2797–2806 | DOI | MR