Bases and interbasis expansions in the generalized MIC–Kepler problem in the continuous spectrum and the scattering problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 285-298 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The spherical and parabolic wave functions are calculated for the generalized MIC–Kepler system in the continuous spectrum. It is shown that the coefficients of the parabola–sphere and sphere–parabola expansion are expressed in terms of the generalized hypergeometric function $_{3}F_2(\ldots\mid 1)$. The quantum mechanical problem of scattering in the generalized MIC–Kepler system is solved.
Keywords: generalized MIC–Kepler problem, Tamm ring-shaped monopole harmonics, basis, interbasis expansion, scattering amplitude, scattering cross section.
@article{TMF_2023_217_2_a2,
     author = {L. G. Mardoyan},
     title = {Bases and interbasis expansions in the~generalized {MIC{\textendash}Kepler} problem in the~continuous spectrum and the~scattering problem},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {285--298},
     year = {2023},
     volume = {217},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a2/}
}
TY  - JOUR
AU  - L. G. Mardoyan
TI  - Bases and interbasis expansions in the generalized MIC–Kepler problem in the continuous spectrum and the scattering problem
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 285
EP  - 298
VL  - 217
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a2/
LA  - ru
ID  - TMF_2023_217_2_a2
ER  - 
%0 Journal Article
%A L. G. Mardoyan
%T Bases and interbasis expansions in the generalized MIC–Kepler problem in the continuous spectrum and the scattering problem
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 285-298
%V 217
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a2/
%G ru
%F TMF_2023_217_2_a2
L. G. Mardoyan. Bases and interbasis expansions in the generalized MIC–Kepler problem in the continuous spectrum and the scattering problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 285-298. http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a2/

[1] L. Mardoyan, “The generalized MIC-Kepler system”, J. Math. Phys., 44:11 (2003), 4981–4987 | DOI | MR

[2] D. Zwanziger, “Exactly soluble nonrelativistic model of particles with both electric and magnetic charges”, Phys. Rev., 176:5 (1968), 1480–1488 | DOI

[3] H. McIntosh, A. Cisneros, “Degeneracy in the presence of a magnetic monopole”, J. Math. Phys., 11:3 (1970), 896–916 | DOI | MR

[4] P. Kustaanheimo, A. Schinzel, H. Davenport, E. Stiefel, “Perturbation theory of Kepler motion based on spinor regularization”, J. Reine Angew. Math., 1965:218 (1965), 204–219 | DOI | MR

[5] T. Iwai, Y. Uwano, “The quantised MIC-Kepler problem and its symmetry group for negative energies”, J. Phys. A: Math. Gen., 21:22 (1988), 4083–4104 | DOI | MR

[6] A. Nersessian, V. Ter-Antonyan, “ ‘Charge-dyon’ system as the reduced oscillator”, Modern Phys. Lett. A, 9:26 (1994), 2431–2435 | DOI | MR

[7] V. Ter-Antonyan, A. Nersessian, “Quantum oscillator and a bound system of two dyons”, Modern Phys. Lett. A, 10:34 (1995), 2633–2638 | DOI

[8] A. Nersessian, V. Ter-Antonyan, M. M. Tsulaia, “A note on quantum Bohlin transformation”, Modern Phys. Lett. A, 11:19 (1996), 1605–1610 | DOI | MR

[9] A. P. Nersessian, V. M. Ter-Antonyan, “Anyons, monopoles, and Coulomb problem”, YaF, 61:10 (1998), 1868–1872, arXiv: physics/9712027 | MR

[10] M. Kibler, L. G. Mardoyan, G. S. Pogosyan, “On a generalized Kepler–Coulomb system: Interbasis expansions”, Int. J. Quantum Chem., 52:6 (1994), 1301 | DOI

[11] J. Friš, V. Mandrosov, Ya. A. Smorodinsky, M. Uhíř, P. Winternitz, “On higher symmetries in quantum mechanics”, Phys. Lett., 16:3 (1965), 354–356 | DOI | MR

[12] N. W. Evans, “Super-integrability of the Winternitz system”, Phys. Lett. A, 147:8–9 (1990), 483–486 | MR

[13] H. Hartmann, “Die Bewegung eines Körpers in einem ringförmigen Potentialfeld”, Theor. Chim. Acta, 24 (1972), 201–206 ; H. Hartmann, R. Schuch, J. Radke, “Die diamagnetische Suszeptibilität eines nicht kugelsymmetrischen Systems”, Theor. Chim. Acta, 42 (1976), 1–3 ; H. Hartmann, R. Schuch, “Spin-orbit coupling for the motion of a particle in a ring-shaped potential”, Int. J. Quantum Chem., 18:1 (1980), 125–141 ; C. Quesne, “A new ring-shaped potential and its dynamical invariance algebra”, J. Phys. A: Math. Gen., 21:14 (1988), 3093–3101 | DOI | DOI | DOI | DOI | MR

[14] L. G. Mardoyan, “Spheroidal analysis of the generalized MIC-Kepler system”, YaF, 68:10 (2005), 1808–1816 | DOI | MR

[15] L. G. Mardoyan, M. G. Petrosyan, “Four-dimensional singular oscillator and generalized MIC-Kepler system”, Phys. Atom. Nucl., 70:3 (2007), 572–575 | DOI

[16] I. Marquette, “Generalized MICZ-Kepler system, duality, polynomial and deformed oscillator algebras”, J. Math. Phys., 51:10 (2010), 102105, 10 pp. ; H. Shmavonyan, “$\mathbb{C}^N$-Smorodinsky–Winternitz system in a constant magnetic field”, Phys. Lett. A, 383:12 (2019), 1223–1228 | DOI | Zbl | DOI | MR

[17] L. G. Mardoyan, “Rasseyanie elektronov na dione”, TMF, 136:2 (2003), 246–256 | DOI | DOI | MR

[18] I. E. Tamm, Sobranie nauchnykh trudov, v. 2, Nauka, M., 1975 | DOI

[19] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR

[20] L. G. Mardoyan, “Koltseobraznye funktsii i $6j$-simvoly Vignera”, TMF, 146:2 (2006), 299–310 | DOI | DOI | MR | Zbl

[21] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. III, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1974 | MR | MR | Zbl

[22] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 1, Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1973 | MR | Zbl

[23] L. G. Mardoyan, G. S. Pogosyan, A. N. Sisakyan, V. M. Ter-Antonyan, Kvantovye sistemy so skrytoi simmetriei. Mezhbazisnye razlozheniya, Fizmatlit, M., 2006