Symmetry transformations of the~vortex field statistics in
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 438-451
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We use the concept of gauge transformations in the proof of the invariance of the statistics of zero-vorticity lines in the case of the inverse energy cascade in wave optical turbulence; we study it in the framework of the hydrodynamic approximation of the two-dimensional nonlinear Schrödinger equation for the weight velocity field $\mathbf u$. The multipoint probability distribution density functions $f_n$ of the vortex field $\Omega=\nabla\times\mathbf u$ satisfy an infinite chain of Lundgren–Monin–Novikov equations {(}statistical form of the Euler equations{\rm)}. The equations are considered in the case of the external action in the form of white Gaussian noise and large-scale friction, which makes the probability distribution density function statistically stationary. The main result is that the transformations are local and conformally transform the $n$-point statistics of zero-vorticity lines or the probability that a random curve $\mathbf x(l)$ passes through points $\mathbf x_i\in\mathbb R^2$ for $l=l_i$, $i=1,\dots,n$, where $\Omega=0$, is invariant under conformal transformations.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
optical turbulence, $n$-point statistics of a vortex field, Lundgren–Monin–Novikov equations, gauge transformations
Mots-clés : conformal invariance.
                    
                  
                
                
                Mots-clés : conformal invariance.
@article{TMF_2023_217_2_a13,
     author = {V. N. Grebenev and A. N. Grishkov and S. B. Medvedev},
     title = {Symmetry transformations of the~vortex field statistics in},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {438--451},
     publisher = {mathdoc},
     volume = {217},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a13/}
}
                      
                      
                    TY - JOUR AU - V. N. Grebenev AU - A. N. Grishkov AU - S. B. Medvedev TI - Symmetry transformations of the~vortex field statistics in JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 438 EP - 451 VL - 217 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a13/ LA - ru ID - TMF_2023_217_2_a13 ER -
%0 Journal Article %A V. N. Grebenev %A A. N. Grishkov %A S. B. Medvedev %T Symmetry transformations of the~vortex field statistics in %J Teoretičeskaâ i matematičeskaâ fizika %D 2023 %P 438-451 %V 217 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a13/ %G ru %F TMF_2023_217_2_a13
V. N. Grebenev; A. N. Grishkov; S. B. Medvedev. Symmetry transformations of the~vortex field statistics in. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 438-451. http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a13/
