Mots-clés : conformal invariance.
@article{TMF_2023_217_2_a13,
author = {V. N. Grebenev and A. N. Grishkov and S. B. Medvedev},
title = {Symmetry transformations of the~vortex field statistics in},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {438--451},
year = {2023},
volume = {217},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a13/}
}
TY - JOUR AU - V. N. Grebenev AU - A. N. Grishkov AU - S. B. Medvedev TI - Symmetry transformations of the vortex field statistics in JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 438 EP - 451 VL - 217 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a13/ LA - ru ID - TMF_2023_217_2_a13 ER -
V. N. Grebenev; A. N. Grishkov; S. B. Medvedev. Symmetry transformations of the vortex field statistics in. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 438-451. http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a13/
[1] C. Wan, Q. Cao, J. Chen, A. Chong, Q. Zhan, “Toroidal vortices of light”, Nat. Photon., 16 (2022), 519–522 | DOI
[2] M. D. Bustamante, S. Nazarenko, “Derivation of the Biot–Savart equation from the nonlinear Schrödinger equation”, Phys. Rev. E, 92:5 (2015), 053019, 9 pp. | DOI | MR
[3] A. M. Polyakov, “The theory of turbulence in two dimensions”, Nucl. Phys. B, 396:2–3 (1993), 367–385 | DOI
[4] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, “Infinite conformal symmetry in two-dimensional quantum field theory”, Nucl. Phys. B, 241:2 (1984), 333–380 | DOI
[5] V. N. Grebenev, A. N. Grishkov, S. B. Medvedev, M. P. Fedoruk, “Gidrodinamicheskoe priblizhenie dlya dvumernoi opticheskoi turbulentnosti: simmetrii statisticheskikh raspredelenii”, Kvantovaya elektronika, 52:11 (2022), 1023–1030
[6] V. N. Grebenev, A. N. Grishkov, M. Oberlak, “Simmetriii uravnenii Landgrena–Monina–Novikova dlya raspredelenii veroyatnosti polya vikhrya”, Dokl. RAN. Fiz. tekhn. nauki, 509:1 (2023), 50–55 | DOI
[7] V. N. Grebenev, M. Wacławczyk, M. Oberlack, “Conformal invariance of the Lundgren–Monin–Novikov equations for vorticity fields in 2D turbulence”, J. Phys. A: Math. Theor., 50:43 (2017), 435502, 22 pp. | DOI | Zbl
[8] V. N. Grebenev, M. Wacławczyk, M. Oberlack, “Conformal invariance of the zero-vorticity Lagrangian path in 2D turbulence”, J. Phys. A: Math. Theor., 52:33 (2019), 335501, 16 pp. | DOI
[9] M. Wacławczyk, V. N. Grebenev, M. Oberlack, “Conformal invariance of characteristic lines in a class of hydrodynamic models”, Symmetry, 12:9 (2020), 1482, 19 pp. | DOI
[10] M. Wacławczyk, V. N. Grebenev, M. Oberlack, “Conformal invariance of the $1$-point statistics of the zero-isolines of $2d$ scalar fields in inverse turbulent”, Phys. Rev. Fluids, 6:8 (2021), 084610, 15 pp. | DOI
[11] R. Panico, P. Comaron, M. Matuszewski, A. S. Lanotte, D. Trypogeorgos, G. Gigli, M. De Giorgi, V. Ardizzone, D. Sanvitto, D. Ballarini, “Onset of vortex clustering and inverse energy cascade in dissipative quantum fluids”, Nat. Photon., 17 (2023), 451–456, arXiv: 2205.02925 | DOI
[12] U. Bortolozzo, J. Laurie, S. Nazarenko, S. Residori, “Optical wave turbulence and the condensation of light”, J. Opt. Soc. Am. B, 26:12 (2009), 2280–2284 | DOI
[13] G. Falkovich, “Konformnaya invariantnost v gidrodinamicheskoi turbulentnosti”, UMN, 62:3(375) (2007), 193–206 | DOI | DOI | MR | Zbl
[14] E. Madelung, “Quantentheorie in hydrodynamischer Form”, Z. Phys., 40 (1927), 322–326 | DOI
[15] L. P. Pitaevskii, “Vikhrevye niti v neidealnom boze-gaze”, ZhETF, 40:2 (1961), 646–651
[16] R. Friedrich, A. Daitche, O. Kamps, J. Lülff, M. Voßkuhle, M. Wilczek, “The Lundgren–Monin–Novikov hierarchy: Kinetic equations for turbulence”, C. R. Physique, 13:9–10 (2012), 929–953 | DOI
[17] D. Bernard, G. Boffetta, A. Celani, G. Falkovich, “Conformal invariance in two-dimensional turbulence”, Nature Phys., 2 (2006), 124–128 | DOI
[18] D. Bernard, G. Boffetta, A. Celani, G. Falkovich, “Inverse turbulent cascades and conformally invariant curves”, Phys. Rev. Lett., 98:2 (2007), 024501, 4 pp. | DOI