Free energy, entropy, and magnetization of a~one-dimensional
Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 430-437

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a one-dimensional Ising model (chain) with the the nearest-neighbor interaction and with a random nonmagnetic dilution. We find the exact free energy of such a chain as a function of the impurity concentration, temperature, and the external magnetic field. In the case of antiferromagnetic interaction in the chain, we find the specific magnetization, the mean value of the product of neighboring spins, and the entropy as functions of these parameters. We study the residual system entropy.
Keywords: Ising model, diluted antiferromagnetic, magnetic frustration.
@article{TMF_2023_217_2_a12,
     author = {S. V. Semkin and V. P. Smagin},
     title = {Free energy, entropy, and magnetization of a~one-dimensional},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {430--437},
     publisher = {mathdoc},
     volume = {217},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a12/}
}
TY  - JOUR
AU  - S. V. Semkin
AU  - V. P. Smagin
TI  - Free energy, entropy, and magnetization of a~one-dimensional
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 430
EP  - 437
VL  - 217
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a12/
LA  - ru
ID  - TMF_2023_217_2_a12
ER  - 
%0 Journal Article
%A S. V. Semkin
%A V. P. Smagin
%T Free energy, entropy, and magnetization of a~one-dimensional
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 430-437
%V 217
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a12/
%G ru
%F TMF_2023_217_2_a12
S. V. Semkin; V. P. Smagin. Free energy, entropy, and magnetization of a~one-dimensional. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 430-437. http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a12/