Free energy, entropy, and magnetization of a one-dimensional
Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 430-437
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a one-dimensional Ising model (chain) with the the nearest-neighbor interaction and with a random nonmagnetic dilution. We find the exact free energy of such a chain as a function of the impurity concentration, temperature, and the external magnetic field. In the case of antiferromagnetic interaction in the chain, we find the specific magnetization, the mean value of the product of neighboring spins, and the entropy as functions of these parameters. We study the residual system entropy.
Keywords: Ising model, diluted antiferromagnetic, magnetic frustration.
@article{TMF_2023_217_2_a12,
     author = {S. V. Semkin and V. P. Smagin},
     title = {Free energy, entropy, and magnetization of a~one-dimensional},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {430--437},
     year = {2023},
     volume = {217},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a12/}
}
TY  - JOUR
AU  - S. V. Semkin
AU  - V. P. Smagin
TI  - Free energy, entropy, and magnetization of a one-dimensional
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 430
EP  - 437
VL  - 217
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a12/
LA  - ru
ID  - TMF_2023_217_2_a12
ER  - 
%0 Journal Article
%A S. V. Semkin
%A V. P. Smagin
%T Free energy, entropy, and magnetization of a one-dimensional
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 430-437
%V 217
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a12/
%G ru
%F TMF_2023_217_2_a12
S. V. Semkin; V. P. Smagin. Free energy, entropy, and magnetization of a one-dimensional. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 430-437. http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a12/

[1] Dzh. Zaiman, Modeli besporyadka. Teoreticheskaya fizika odnorodno neuporyadochennykh sistem, Mir, M., 1982

[2] X. Ke, R. S. Freitas, B. G. Ueland, G. C. Lau, M. L. Dahlberg, R. J. Cava, R. Moessner, P. Schiffer, “Nonmonotonic zero-point entropy in diluted spin ice”, Phys. Rev. Lett., 99:13 (2007), 137203, 4 pp. | DOI

[3] C. R. Bekster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR | MR | Zbl

[4] Zh. V. Dzyuba, V. N. Udodov, “Kriticheskii indeks vospriimchivosti 1D-izingovskogo ferromagnetika, zamknutogo v koltso”, Fizika tverdogo tela, 60:7 (2018), 1318–1320 | DOI | DOI

[5] E. S. Tsuvarev, F. A. Kassan-Ogly, “Dekorirovannaya izingovskaya tsepochka v magnitnom pole”, ZhETF, 158:6(12) (2020), 1125–1138 | DOI | DOI

[6] S. V. Semkin, V. P. Smagin, E. G. Gusev, “Magnitnaya vospriimchivost razbavlennogo izingovskogo magnetika”, TMF, 201:2 (2019), 280–290 | DOI | DOI | MR

[7] I. A. Kvasnikov, Termodinamika i statisticheskaya fizika, v. 2, Teoriya ravnovesnykh sistem, Editorial URSS, M., 2002

[8] A. K. Murtazaev, M. K. Ramazanov, K. Sh. Murtazaev, M. A. Magomedov, M. K. Badiev, “Vliyanie magnitnogo polya na termodinamicheskie i magnitnye svoistva antiferromagnitnoi modeli Izinga na ob'emno-tsentrirovannoi kubicheskoi reshetke”, FTT, 62:2 (2020), 229–233 | DOI

[9] Y. A. Shevchenko, K. V. Nefedev, V. Y. Kapitan, “Specific heat of square spin ice in finite point Ising-like dipoles model”, Solid State Phenom., 245 (2015), 23–27 | DOI

[10] A. Farhan, A. Kleibert, P. M. Derlet, L. Anghinolfi, A. Balan, R. V. Chopdekar, M. Wyss, S. Gliga, F. Nolting, L. J. Heyderman, “Thermally induced magnetic relaxation in building blocks of artificial kagome spin ice”, Phys. Rev. B, 89:21 (2014), 214405, 9 pp. | DOI

[11] H. D. Zhou, C. R. Wiebe, J. A. Janik, L. Balicas, Y. J. Yo, Y. Qiu, J. R. D. Copley, J. S. Gardner, “Dynamic spin ice: Pr$_2$ Sn$_2$ O$_7$”, Phys. Rev. Lett., 101:22 (2008), 227204, 4 pp. | DOI

[12] S. V. Semkin, V. P. Smagin, V. S. Tarasov, “Frustratsii v razbavlennom izingovskom magnetike na reshetke Bete”, ZhETF, 161:6 (2022), 840–846 | DOI | DOI