Free energy, entropy, and magnetization of a~one-dimensional
Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 430-437
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a one-dimensional Ising model (chain) with the the nearest-neighbor interaction and with a random nonmagnetic dilution. We find the exact free energy of such a chain as a function of the impurity concentration, temperature, and the external magnetic field. In the case of antiferromagnetic interaction in the chain, we find the specific magnetization, the mean value of the product of neighboring spins, and the entropy as functions of these parameters. We study the residual system entropy.
Keywords:
Ising model, diluted antiferromagnetic, magnetic frustration.
@article{TMF_2023_217_2_a12,
author = {S. V. Semkin and V. P. Smagin},
title = {Free energy, entropy, and magnetization of a~one-dimensional},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {430--437},
publisher = {mathdoc},
volume = {217},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a12/}
}
TY - JOUR AU - S. V. Semkin AU - V. P. Smagin TI - Free energy, entropy, and magnetization of a~one-dimensional JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 430 EP - 437 VL - 217 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a12/ LA - ru ID - TMF_2023_217_2_a12 ER -
S. V. Semkin; V. P. Smagin. Free energy, entropy, and magnetization of a~one-dimensional. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 430-437. http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a12/