On the scattering problem for a potential decreasing as the inverse square of distance
Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 416-429 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A solution of the scattering problem is obtained for the Schrödinger equation with the potential of induced dipole interaction, which decreases as the inverse square of the distance. Such a potential arises in the collision of an incident charged particle with a complex of charged particles (for example, in the collision of electrons with atoms). An integral equation for the wave function is constructed for an arbitrary value of the orbital momentum of relative motion. By solving this equation, an exact integral representation for the $K$-matrix of the problem is obtained in terms of the wave function. This representation is used to analyze the behavior of the $K$-matrix at low energies and to obtain comprehensive information on its threshold behavior for various values of the dipole momentum. The resulting solution is applied to study the behavior of the scattering cross sections in the electron–positron–antiproton system.
Keywords: scattering of charged particles
Mots-clés : dipole interaction.
@article{TMF_2023_217_2_a11,
     author = {V. A. Gradusov and S. L. Yakovlev},
     title = {On the~scattering problem for a~potential decreasing as the~inverse square of distance},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {416--429},
     year = {2023},
     volume = {217},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a11/}
}
TY  - JOUR
AU  - V. A. Gradusov
AU  - S. L. Yakovlev
TI  - On the scattering problem for a potential decreasing as the inverse square of distance
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 416
EP  - 429
VL  - 217
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a11/
LA  - ru
ID  - TMF_2023_217_2_a11
ER  - 
%0 Journal Article
%A V. A. Gradusov
%A S. L. Yakovlev
%T On the scattering problem for a potential decreasing as the inverse square of distance
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 416-429
%V 217
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a11/
%G ru
%F TMF_2023_217_2_a11
V. A. Gradusov; S. L. Yakovlev. On the scattering problem for a potential decreasing as the inverse square of distance. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 416-429. http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a11/

[1] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. III, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1974 | MR | MR | Zbl

[2] V. P. Zhigunov, B. N. Zakharev, Metody silnoi svyazi kanalov v kvantovoi teorii rasseyaniya, Atomizdat, M., 1974

[3] Dzh. Teilor, Teoriya rasseyaniya: kvantovaya teoriya nerelyativistskikh stolknovenii, Mir, M., 1975

[4] M. Gailitis, R. Damburg, “Nekotorye osobennosti porogovogo povedeniya sechenii dlya vozbuzhdeniya vodoroda elektronami iz-za nalichiya lineinogo effekta Shtarka v vodorode”, ZhETF, 44:5 (1963), 1644–1649

[5] M. Gailitis, R. Damburg, “The influence of close coupling on the threshold behaviour of cross sections of electron-hydrogen scattering”, Proc. Phys. Soc., 82:2 (1963), 192–200 | DOI

[6] P. Descouvemont, D. Baye, “The $R$-matrix theory”, Rep. Prog. Phys., 73:3 (2010), 036301, 44 pp. | DOI | MR

[7] P. G. Burke, $R$-Matrix Theory of Atomic Collisions, Springer, Heidelberg, Dordrecht, London, New York, 2011

[8] P. Péres, D. Banerjee, F. Biraben et al. (Collab.), “The GBAR antimatter gravity experiment”, Hyperfine Interactions, 233 (2015), 21–27 | DOI

[9] G. Testera, S. Aghion, C. Amsler et al. (AEgIS Collab.), “The AEgIS experiment”, Hyperfine Interactions, 233 (2015), 13–20 | DOI

[10] Chi Yu Hu, D. Caballero, Z. Papp, “Induced long-range dipole-field-enhanced antihydrogen formation in the ${\bar p}+Ps(n=2)\to e^- + {\overline H}(n\le 2)$ reaction”, Phys. Rev. Lett., 88:6 (2002), 063401, 4 pp. | DOI

[11] M. Valdes, M. Dufour, R. Lazauskas, P.-A. Hervieux, “Ab initio calculations of scattering cross sections of the three-body system $({\bar p}, e^+ ,e^-)$ between the $e^- +\overline{H}(n = 2)$ and $e^- + \overline{H}(n = 3)$ thresholds”, Phys. Rev. A, 97:1 (2018), 012709, 12 pp. | DOI

[12] V. A. Gradusov, V. A. Roudnev, E. A. Yarevsky, S. L. Yakovlev, “High resolution calculations of low energy scattering in $e^- e^+ p^-$ and $e^+e^-\mathrm{He}^{++}$ systems via Faddeev–Merkuriev equations”, J. Phys. B: At. Mol. Opt. Phys., 52:5 (2019), 055202, 13 pp. | DOI

[13] V. A. Gradusov, V. A. Roudnev, E. A. Yarevsky, S. L. Yakovlev, “Solving the Faddeev–Merkuriev equations in total orbital momentum representation via spline collocation and tensor product preconditioning”, Commun. Comput. Phys., 30:1 (2021), 255–287 | DOI | MR

[14] V. A. Gradusov, V. A. Rudnev, E. A. Yarevskii, S. L. Yakovlev, “Teoreticheskoe issledovanie reaktsii v trekhchastichnoi $e^-e^+{\bar p}$ sisteme i secheniya obrazovaniya antivodoroda”, Pisma v ZhETF, 114:1 (2021), 6–12 | DOI

[15] L. H. Thomas, “The interaction between a neutron and a proton and the structure of H$^3$”, Phys. Rev., 47:12 (1935), 903–909 | DOI

[16] V. N. Efimov, “Slabosvyazannye sostoyaniya trekh rezonansno vzaimodeistvuyuschikh chastits”, YaF, 12:5 (1970), 1080–1090

[17] O. I. Kartavtsev, A. V. Malykh, “Minlos–Faddeev regularization of zero-range interactions in the three-body problem”, Pisma v ZhETF, 116:3 (2022), 179–180 | DOI

[18] V. V. Pupyshev, “K zadache trekh chastits s parnymi vzaimodeistviyami, obratno proportsionalnymi kvadratam rasstoyanii”, TMF, 128:2 (2001), 268–287 | DOI | DOI | MR | Zbl

[19] L. Rosenberg, “Multichannel effective-range theory with long-range interactions”, Phys. Rev. A, 57:3 (1998), 1862–1869 | DOI

[20] V. de Alfaro, T. Redzhe, Potentsialnoe rasseyanie, Mir, M., 1966 | MR

[21] S. L. Yakovlev, M. V. Volkov, E. Yarevsky, N. Elander, “The impact of sharp screening on the Coulomb scattering problem in three dimensions”, J. Phys. A: Math. Theor., 43:24 (2010), 254302, 14 pp. | DOI | MR

[22] M. V. Volkov, S. L. Yakovlev, E. A. Yarevsky, N. Elander, “Potential splitting approach to multichannel Coulomb scattering: The driven Schrödinger equation formulation”, Phys. Rev. A, 83:3 (2011), 032722, 12 pp. | DOI

[23] E. Yarevsky, S. L. Yakovlev, Å. Larson, N. Elander, “Potential-splitting approach applied to the Temkin–Poet model for electron scattering off the hydrogen atom and the helium ion”, J. Phys. B: At. Mol. Opt. Phys., 48:11 (2015), 115002, 8 pp. | DOI

[24] M. V. Volkov, E. A. Yarevsky, S. L. Yakovlev, “Potential splitting approach to the three-body Coulomb scattering problem”, Euro Phys. Lett., 110:3 (2015), 30006, 6 pp. | DOI

[25] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | MR | Zbl