Classification of semidiscrete equations of hyperbolic type. The case of third-order symmetries
Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 404-415 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We classify semidiscrete equations of hyperbolic type. We study the class of equations of the form $$ \frac{du_{n+1}}{dx}=f\biggl(\frac{du_{n}}{dx},u_{n+1},u_{n}\biggr), $$ where the unknown function $u_n(x)$ depends on one discrete ($n$) and one continuous ($x$) variables. The classification is based on the requirement that generalized symmetries exist in the discrete and continuous directions. We consider the case where the symmetries are of order $3$ in both directions. As a result, a list of equations with the required conditions is obtained.
Keywords: integrability, generalized symmetry, semidiscrete equation, hyperbolic type.
Mots-clés : classification
@article{TMF_2023_217_2_a10,
     author = {R. N. Garifullin},
     title = {Classification of semidiscrete equations of hyperbolic type. {The~case} of third-order symmetries},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {404--415},
     year = {2023},
     volume = {217},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a10/}
}
TY  - JOUR
AU  - R. N. Garifullin
TI  - Classification of semidiscrete equations of hyperbolic type. The case of third-order symmetries
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 404
EP  - 415
VL  - 217
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a10/
LA  - ru
ID  - TMF_2023_217_2_a10
ER  - 
%0 Journal Article
%A R. N. Garifullin
%T Classification of semidiscrete equations of hyperbolic type. The case of third-order symmetries
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 404-415
%V 217
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a10/
%G ru
%F TMF_2023_217_2_a10
R. N. Garifullin. Classification of semidiscrete equations of hyperbolic type. The case of third-order symmetries. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 404-415. http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a10/

[1] A. P. Veselov, A. B. Shabat, “Odevayuschaya tsepochka i spektralnaya teoriya operatora Shredingera”, Funkts. analiz i ego pril., 27:2 (1993), 1–21 | DOI | MR | Zbl

[2] R. Yamilov, “Symmetries as integrability criteria for differential difference equations”, J. Phys. A: Math. Gen., 39:45 (2006), R541–R623 | DOI | MR

[3] R. I. Yamilov, “O klassifikatsii diskretnykh evolyutsionnykh uravnenii”, UMN, 38:6(234) (1983), 155–156

[4] R. I. Yamilov, “Obratimye zameny peremennykh, porozhdennye preobrazovaniyami Beklunda”, TMF, 85:3 (1990), 368–375 | DOI | MR | Zbl

[5] R. N. Garifullin, I. T. Habibullin, “Generalized symmetries and integrability conditions for hyperbolic type semi-discrete equations”, J. Phys. A: Math. Theor., 54:20 (2021), 205201, 19 pp. | DOI | MR

[6] A. G. Meshkov, V. V. Sokolov, “Integriruemye evolyutsionnye uravneniya s postoyannoi separantoi”, Ufimsk. matem. zhurn., 4:3 (2012), 104–154 | Zbl

[7] S. I. Svinolupov, V. V. Sokolov, “Ob evolyutsionnykh uravneniyakh s netrivialnymi zakonami sokhraneniya”, Funkts. analiz i ego pril., 16:4 (1982), 86–87 | DOI | MR | Zbl

[8] R. N. Garifullin, R. I. Yamilov, “Generalized symmetry classification of discrete equations of a class depending on twelve parameters”, J. Phys. A: Math. Theor., 45:34 (2012), 345205, 23 pp. | DOI | MR

[9] R. N. Garifullin, A. V. Mikhailov, R. I. Yamilov, “Diskretnoe uravnenie na kvadratnoi reshetke s nestandartnoi strukturoi vysshikh simmetrii”, TMF, 180:1 (2014), 17–34 | DOI | DOI | MR

[10] R. N. Garifullin, R. I. Yamilov, “Neobychnaya seriya avtonomnykh diskretnykh integriruemykh uravnenii na kvadratnoi reshetke”, TMF, 200:1 (2019), 50–71 | DOI | DOI | MR

[11] V. E. Adler, “Bäcklund transformation for the Krichever–Novikov equation”, Internat. Math. Res. Notices, 1998:1 (1998), 1–4 | DOI

[12] S. Ya. Startsev, “Integriruemye po Darbu differentsialno-raznostnye uravneniya, dopuskayuschie integral pervogo poryadka”, Ufimsk. matem. zhurn., 4:3 (2012), 161–176

[13] R. I. Yamilov, “On the construction of Miura type transformations by others of this kind”, Phys. Lett. A, 173:1 (1993), 53–57 | DOI | MR

[14] S. Ya. Startsev, “Non-point invertible transformations and integrability of partial difference equations”, SIGMA, 10 (2014), 066, 13 pp. | DOI | MR