Classification of semidiscrete equations of hyperbolic type. The~case of third-order symmetries
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 404-415
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We classify semidiscrete equations of hyperbolic type. We study the class of equations of the form 
$$ \frac{du_{n+1}}{dx}=f\biggl(\frac{du_{n}}{dx},u_{n+1},u_{n}\biggr), $$ 
where the unknown function $u_n(x)$ depends on one discrete ($n$) and one continuous ($x$) variables. The classification is based on the requirement that generalized symmetries exist in the discrete and continuous directions. We consider the case where the symmetries are of order $3$ in both directions. As a result, a list of equations with the required conditions is obtained.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
integrability, generalized symmetry, semidiscrete equation, hyperbolic type.
Mots-clés : classification
                    
                  
                
                
                Mots-clés : classification
@article{TMF_2023_217_2_a10,
     author = {R. N. Garifullin},
     title = {Classification of semidiscrete equations of hyperbolic type. {The~case} of third-order symmetries},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {404--415},
     publisher = {mathdoc},
     volume = {217},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a10/}
}
                      
                      
                    TY - JOUR AU - R. N. Garifullin TI - Classification of semidiscrete equations of hyperbolic type. The~case of third-order symmetries JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 404 EP - 415 VL - 217 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a10/ LA - ru ID - TMF_2023_217_2_a10 ER -
%0 Journal Article %A R. N. Garifullin %T Classification of semidiscrete equations of hyperbolic type. The~case of third-order symmetries %J Teoretičeskaâ i matematičeskaâ fizika %D 2023 %P 404-415 %V 217 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a10/ %G ru %F TMF_2023_217_2_a10
R. N. Garifullin. Classification of semidiscrete equations of hyperbolic type. The~case of third-order symmetries. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 404-415. http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a10/
