@article{TMF_2023_217_2_a1,
author = {M. R. Bahraminasab and M. Ghominejad},
title = {$\mathcal S$-modular transformation of the~$\mathcal N=2$ superconformal algebra characters},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {260--284},
year = {2023},
volume = {217},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a1/}
}
TY - JOUR AU - M. R. Bahraminasab AU - M. Ghominejad TI - $\mathcal S$-modular transformation of the $\mathcal N=2$ superconformal algebra characters JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 260 EP - 284 VL - 217 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a1/ LA - ru ID - TMF_2023_217_2_a1 ER -
%0 Journal Article %A M. R. Bahraminasab %A M. Ghominejad %T $\mathcal S$-modular transformation of the $\mathcal N=2$ superconformal algebra characters %J Teoretičeskaâ i matematičeskaâ fizika %D 2023 %P 260-284 %V 217 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a1/ %G ru %F TMF_2023_217_2_a1
M. R. Bahraminasab; M. Ghominejad. $\mathcal S$-modular transformation of the $\mathcal N=2$ superconformal algebra characters. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 260-284. http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a1/
[1] M. Ademollo, L. Brink, A. D'Adda et al., “Supersymmetric strings and colour confinement”, Phys. Lett. B, 62:1 (1976), 105–110 | DOI
[2] V. G. Kac, “Lie superalgebras”, Adv. Math., 26:1 (1977), 8–96 | DOI | MR
[3] D. Fattori, V. G. Kac, “Classification of finite simple Lie conformal superalgebras”, J. Algebra, 258:1 (2002), 23–59 | DOI | MR
[4] V. G. Kac, “Classification of supersymmetries”, Proceedings of the International Congress of Mathematicians (Beijing, August 20–28, 2002), v. I, ed. Tatsien Li, Higher Education Press, Beijing, 2002, 319–344 | MR
[5] A. Neveu, J. H. Schwarz, “Factorizable dual model of pions”, Nucl. Phys. B, 31:1 (1971), 86–112 | DOI
[6] P. Ramond, “Dual theory for free fermions”, Phys. Rev. D, 3:10 (1971), 2415–2418 | DOI | MR
[7] A. Schwimmer, N. Seiberg, “Comments on the $N =2,3,4$ superconformal algebras in two dimensions”, Phys. Lett. B, 184:2–3 (1986), 191–196 | DOI
[8] J. Li, Y. Su, L. Zhu, “Classification of indecomposable modules of the intermediate series over the twisted $N=2$ superconformal algebra”, J. Math. Phys., 51:8 (2010), 083513, 17 pp. | DOI | MR
[9] J. Fu, Q. Jiang, Y. Su, “Classification of modules of the intermediate series over Ramond $N=2$ superconformal algebras”, J. Math. Phys., 48:4 (2007), 043508, 15 pp. | DOI | MR
[10] M. Ghominejad, Higher level appell functions, modular transformations and non-unitary characters, Ph.D. thesis, Durham Univ., Durham, UK, 2003
[11] B. L. Feigin, A. M. Semikhatov, V. A. Sirota, I. Yu. Tipunin, “Resolutions and characters of irreducible representations of the $N=2$ superconformal algebra”, Nucl. Phys. B, 536:3 (1999), 617–656 | DOI | MR
[12] M. Gorelik, V. Kac, “On simplicity of vacuum modules”, Adv. Math., 211:2 (2007), 621–677 | DOI | MR
[13] S.-S. Roan, “Heisenberg and modular invariance of $N=2$ conformal field theory”, Internat. J. Modern Phys. A, 15:19 (2000), 3065–3094, arXiv: , hep-th/9902198 | DOI | MR
[14] M. Dörrzapf, B. Gato-Rivera, “Determinant formula for the topological $N=2$ superconformal algebra”, Nucl. Phys. B, 558:3 (1999), 503–544 | DOI | MR
[15] R. Dijkgraaf, H. Verlinde, E. Verlinde, “Topological strings in $d1$”, Nucl. Phys. B, 352:1 (1991), 59–86 | DOI
[16] T. Eguchi, H. Ooguri, A. Taormina, S.-K. Yang, “Superconformal algebras and string compactification on manifolds with ${\rm SU}(n)$ holonomy”, Nucl. Phys. B, 315:1 (1989), 193–221 | DOI | MR
[17] P. Bantay, “The kernel of the modular representation and the Galois action in RCFT”, Commun. Math. Phys., 233:3 (2003), 423–438 | DOI
[18] B. Bakalov, A. Kirillov, Jr., Lectures on Tensor Categories and Modular Functors, University Lecture Series, 21, AMS, Providence, RI, 2001 | MR
[19] J. Fuchs, I. Runkel, C. Schweigert, “TFT construction of RCFT correlators I: partition functions”, Nucl. Phys. B, 646:3 (2002), 353–497 | DOI
[20] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1988 | DOI | DOI | MR | MR | MR | Zbl
[21] D. F. Lawden, Elliptic Functions and Applications, Applied Mathematical Sciences, 80, Springer, New York, 1989 | DOI | MR
[22] A. Khare, A. Lakshminarayan, U. Sukhatme, “Local identities involving Jacobi elliptic functions”, Pramana J. Phys., 62:6 (2004), 1201–1229 | DOI
[23] S. Kharchev, A. Zabrodin, “Theta vocabulary I”, J. Geom. Phys., 94 (2015), 19–31 | DOI | MR
[24] M. Eichler, D. Zagier, The Theory of Jacobi Forms, Progress in Mathematics, 55, Birkhäuser, Boston, 1985 | DOI | MR
[25] M. R. Bahraminasab, M. Ghominejad, “$N=2$ superconformal characters as the residue of $\widehat{sl}(2|1)$ affine Lie superalgebra characters by defining a new vocabulary for Jacobi theta functions”, J. Geom. Phys., 156 (2020), 103804, 11 pp. | DOI | MR
[26] M. P. Appell, “Sur les fonctions doublement périodique de troisième espèce”, Ann. Sci. École Norm. Sup. (3), 3 (1886), 9–42 | DOI | MR
[27] A. Polishchuk, “M. P. Appell's function and vector bundles of rank 2 on elliptic curves”, Ramanujan J., 5:2 (2001), 111–128, arXiv: math.AG/9810084 | DOI | MR
[28] G. H. Halphen, Traité des fonctions elliptiques et leurs applications, v. 3, Fragments, Gauthier-Villars, Paris, 1891
[29] V. G. Kac, M. Wakimoto, “Integrable highest weight modules over affine superalgebras and Appell's function”, Commun. Math. Phys., 215:3 (2001), 631–682, arXiv: mathph/0006007 | DOI | MR
[30] A. M. Semikhatov, A. Taormina, I. Y. Tipunin, “Higher-level Appell functions, modular transformations and characters”, Commun. Math. Phys., 255:2 (2005), 469–512, arXiv: math.QA/0311314 | DOI
[31] G. Segal, “Geometric aspects of quantum field theories”, Proceedings of the International Congress of Mathematicians (Kyoto, Japan, August, 21–29, 1990), v. 2, ed. I. Satake, Springer, Tokyo, 1991, 1387–1396 | MR
[32] D. Altschüler, P. Ruelle, E. Thiran, “On parity functions in conformal field theories”, J. Phys. A: Math. Gen., 32:19 (1999), 3555–3570 | DOI | MR
[33] P. Di Francesco, P. Mathieu, D. Sénéchal, Conformal Field Theories, Springer, Berlin, 1996 | DOI | MR
[34] T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Graduate Texts in Mathematics, 41, Springer, New York, 1990 | DOI | MR
[35] W. Raji, “A new proof of the transformation law of Jacobi's theta function $\theta_3(\omega,\tau)$”, Proc. Amer. Math. Soc., 135:10 (2007), 3127–3132 | DOI | MR
[36] L. D. Faddeev, R. M. Kashaev, “Quantum dilogarithm”, Modern Phys. Lett. A, 9:5 (1994), 427–434 | DOI | MR
[37] S. L. Woronowicz, “Quantum exponential function”, Rev. Math. Phys., 12:6 (2000), 873–920 | DOI | MR
[38] B. Ponsot, J. Teschner, “Clebsch–Gordan and Racah–Wigner coefficients for a continuous series of representations of $\mathcal U_q(\mathfrak{sl}(2,\mathbb R))$”, Commun. Math. Phys., 224:3 (2001), 613–655, arXiv: math/0007097 | DOI | MR
[39] L. D. Faddeev, R. M. Kashaev, A. Yu. Volkov, “Strongly coupled quantum discrete Liouville theory. I: Algebraic approach and duality”, Commun. Math. Phys., 219:1 (2001), 199–219 | DOI | MR
[40] M. Jimbo, T. Miwa, “Quantum KZ equation with $|q|=1$ and correlation functions of the $XXZ$ model in the gapless regime”, J. Phys. A: Math. Gen., 29:12 (1996), 2923–2958, arXiv: hep-th/9601135 | DOI | MR
[41] S. Kharchev, D. Lebedev, M. Semenov-Tian-Shansky, “Unitary representations of $U_q\bigl(sl(2,\mathbb R)\bigr)$, the modular double and the multiparticle $q$-deformed Toda chains”, Commun. Math. Phys., 225:3 (2002), 573–609 | DOI | MR
[42] L. Brink, S. Deser, B. Zumino, P. Di Vecchia, P. Howe, “Local supersymmetry for spinning particles”, Phys. Lett. B, 64:4 (1976), 435–438 | DOI
[43] D. Gepner, “Space-time supersymmetry in compactified string theory and superconformal models”, Nucl. Phys. B, 296:4 (1988), 757–778 | DOI | MR
[44] J. H. Schwarz, “Supersymmetric superstring compactification”, Physics and Mathematics of Strings: Memorial Volume for Vadim Knizhnik, eds. L. Brink, D. Friedan, A. M. Polyakov, World Sci., Singapore, 467–508 | MR
[45] B. L. Feigin, A. M. Semikhatov, I. Yu. Tipunin, “Equivalence between chain categories of representations of affine $sl(2)$ and $N=2$ superconformal algebras”, J. Math. Phys., 39:7 (1998), 3865–3905 | DOI | MR
[46] S.-J. Cheng, N. Lam, “Finite conformal modules over the $N=2,3,4$ superconformal algebras”, J. Math. Phys., 42:2 (2001), 906–933 | DOI | MR