Dirac representation of the $SO(3,2)$ group and the Landau problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 237-259 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By systematically studying the infinite degeneracy and constants of motion in the Landau problem, we obtain a central extension of the Euclidean group in two dimension as a dynamical symmetry group, and $Sp(2,\mathbb{R})$ as the spectrum generating group, irrespective of the choice of the gauge. The method of group contraction plays an important role. Dirac's remarkable representation of the $SO(3,2)$ group and the isomorphism of this group with $Sp(4,\mathbb{R})$ are revisited. New insights are gained into the meaning of a two-oscillator system in the Dirac representation. It is argued that because even the two-dimensional isotropic oscillator with the $SU(2)$ dynamical symmetry group does not arise in the Landau problem, the relevance or applicability of the $SO(3,2)$ group is invalidated. A modified Landau–Zeeman model is discussed in which the $SO(3,2)$ group isomorphic to $Sp(4,\mathbb{R})$ can arise naturally.
Keywords: dynamical symmetry group, Landau problem, Dirac's remarkable representation
Mots-clés : group contraction, $SO(3,2)$ group.
@article{TMF_2023_217_2_a0,
     author = {S. C. Tiwari},
     title = {Dirac representation of the~$SO(3,2)$ group and {the~Landau} problem},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {237--259},
     year = {2023},
     volume = {217},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a0/}
}
TY  - JOUR
AU  - S. C. Tiwari
TI  - Dirac representation of the $SO(3,2)$ group and the Landau problem
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 237
EP  - 259
VL  - 217
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a0/
LA  - ru
ID  - TMF_2023_217_2_a0
ER  - 
%0 Journal Article
%A S. C. Tiwari
%T Dirac representation of the $SO(3,2)$ group and the Landau problem
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 237-259
%V 217
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a0/
%G ru
%F TMF_2023_217_2_a0
S. C. Tiwari. Dirac representation of the $SO(3,2)$ group and the Landau problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 2, pp. 237-259. http://geodesic.mathdoc.fr/item/TMF_2023_217_2_a0/

[1] G. Goldstein, Klassicheskaya mekhanika, Nauka, M., 1975 | MR | MR | Zbl

[2] L. Shiff, Kvantovaya mekhanika, IL, M., 1957 | Zbl

[3] J. M. Jauch, E. L. Hill, “On the problem of degeneracy in quantum mechanics”, Phys. Rev., 57:7 (1940), 641–645 | DOI | MR

[4] V. A. Dulock, H. V. McIntosh, “Degeneracy of cyclotron motion”, J. Math. Phys., 7:8 (1966), 1401–1412 | DOI

[5] M. H. Johnson, B. A. Lippmann, “Motion in a constant magnetic field”, Phys. Rev., 76:6 (1949), 828–832 | DOI | MR

[6] E. Inonu, E. P. Wigner, “On the contraction of groups and their representations”, Proc. Nat. Acad. Sci. USA, 39:6 (1953), 510–524 | DOI | MR

[7] U. Niederer, “The maximal kinematical invariance group of the harmonic oscillator”, Helv. Phys. Acta, 46:2 (1973), 191–200 | DOI

[8] M. R. Kibler, “On the use of the group SO$(4,2)$ in atomic and molecular physics”, Molecular Phys., 102:11–12 (2004), 1221–1229 | DOI

[9] T. Dereli, P. Nounahon, T. Popov, “A remarkable dynamical symmetry of the Landau problem”, J. Phys.: Conf. Ser., 2191 (2022), 012009, 17 pp. | DOI

[10] P. A. M. Dirac, “A remarkable representation of the $3+2$ de Sitter group”, J. Math. Phys., 4:7 (1963), 901–909 | DOI | MR

[11] S. Baskal, Y. S. Kim, M. E. Noz, “Einstein's $E=mc^2$ derivable from Heisenberg's uncertainty relations”, Quantum Rep., 1:2 (2019), 236–251, arXiv: 1911.03818 | DOI

[12] H. V. McIntosh, “On accidental degeneracy in classical and quantum mechanics”, Amer. J. Phys., 27:9 (1959), 620–625 | DOI | MR

[13] S. C. Tiwari, “Pancharatnam phase for photon”, Optik, 98:1 (1993), 32–34

[14] S. C. Tiwari, “Coulomb-quantum oscillator correspondence in two dimension, pure gauge field and half-quantized vortex”, Modern Phys. Lett. A, 34:16 (2019), 1950128, 12 pp. | DOI | MR

[15] J. B. Ehrman, “On the unitary irreducible representations of the universal covering group of the $3+2$ de Sitter group”, Proc. Cambridge Philos. Soc., 53:2 (1957), 290–303 | DOI | MR

[16] P. A. M. Dirac, “A positive-energy relativistic wave equation”, Proc. Roy. Soc. A, 322:1551 (1971), 435–445 | DOI

[17] P. A. M. Dirac, “A positive-energy relativistic wave equation II”, Proc. R. Soc. London Ser. A, 328:1572 (1972), 1–7

[18] N. T. Evans, “Discrete series for the universal covering group of the $3+2$ dimensional de Sitter group”, J. Math. Phys., 8:2 (1967), 170–184 | DOI

[19] H. L. Stormer, “Nobel Lecture: the fractional quantum Hall effect”, Rev. Modern Phys., 71:4 (1999), 875–889 | DOI | MR