On the classification of nonlinear integrable three-dimensional chains via characteristic Lie algebras
Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 1, pp. 142-178
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We continue describing integrable nonlinear chains of the form $u^j_{n+1,x}=u^j_{n,x}+f(u^{j+1}_{n},u^{j}_n,u^j_{n+1 },u^{j-1}_{n+1})$ with three independent variables on the basis of the existence of a hierarchy of Darboux-integrable reductions. The classification algorithm is based on the well-known fact that characteristic algebras of Darboux-integrable systems have a finite dimension. We use a characteristic algebra in the $x$-direction, whose structure for a given class of models is defined by some polynomial $P(\lambda)$ of degree not exceeding $3$ in the known examples. We assume that $P(\lambda)=\lambda^2$, the classification problem in that case reduces to finding eight unknown functions of a single variable. We obtain a rather narrow class of candidates for the integrability.
Keywords: three-dimensional chains, characteristic algebras, Darboux integrability, characteristic integrals, integrable reductions.
@article{TMF_2023_217_1_a8,
     author = {I. T. Habibullin and A. R. Khakimova},
     title = {On the~classification of nonlinear integrable three-dimensional chains via characteristic {Lie} algebras},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {142--178},
     year = {2023},
     volume = {217},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_1_a8/}
}
TY  - JOUR
AU  - I. T. Habibullin
AU  - A. R. Khakimova
TI  - On the classification of nonlinear integrable three-dimensional chains via characteristic Lie algebras
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 142
EP  - 178
VL  - 217
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_217_1_a8/
LA  - ru
ID  - TMF_2023_217_1_a8
ER  - 
%0 Journal Article
%A I. T. Habibullin
%A A. R. Khakimova
%T On the classification of nonlinear integrable three-dimensional chains via characteristic Lie algebras
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 142-178
%V 217
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2023_217_1_a8/
%G ru
%F TMF_2023_217_1_a8
I. T. Habibullin; A. R. Khakimova. On the classification of nonlinear integrable three-dimensional chains via characteristic Lie algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 1, pp. 142-178. http://geodesic.mathdoc.fr/item/TMF_2023_217_1_a8/

[1] N. Kh. Ibragimov, A. B. Shabat, “Uravnenie Kortevega–de Friza s gruppovoi tochki zreniya”, Dokl. AN SSSR, 244:1 (1979), 57–61

[2] A. V. Zhiber, A. B. Shabat, “Uravneniya Kleina–Gordona s netrivialnoi gruppoi”, Dokl. AN SSSR, 247:5 (1979), 1103–1107 | MR

[3] S. I. Svinolupov, V. V. Sokolov, “Ob evolyutsionnykh uravneniyakh s netrivialnymi zakonami sokhraneniya”, Funkts. analiz i ego pril., 16:4 (1982), 86–87 | DOI | MR | Zbl

[4] A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, “Simmetriinyi podkhod k klassifikatsii nelineinykh uravnenii. Polnye spiski integriruemykh sistem”, UMN, 42(256):4 (1987), 3–53 | DOI | MR | Zbl

[5] V. E. Adler, A. B. Shabat, R. I. Yamilov, “Simmetriinyi podkhod k probleme integriruemosti”, TMF, 125:3 (2000), 355–424 | DOI | DOI | MR | Zbl

[6] V. V. Sokolov, Algebraicheskie struktury v teorii integriruemykh sistem, Institut kompyuternykh issledovanii, M.–Izhevsk, 2019 | DOI

[7] Y. Kodama, J. Gibbons, “A method for solving the dispersionless KP hierarchy and its exact solutions. II”, Phys. Lett. A, 135:3 (1989), 167–170 | DOI | MR

[8] J. Gibbons, S. P. Tsarev, “Reductions of the Benney equations”, Phys. Lett. A, 211:1 (1996), 19–24 ; “Conformal maps and reductions of the Benney equations”, Phys. Lett. A, 258:4–6 (1999), 263–270 | DOI | MR | DOI | MR

[9] E. V. Ferapontov, A. Moro, V. S. Novikov, “Integrable equations in $2 + 1$ dimensions: deformations of dispersionless limits”, J. Phys. A: Math. Theor., 42:34 (2009), 345205, 18 pp. | DOI | MR

[10] A. V. Odesskii, V. V. Sokolov, “Integrable pseudopotentials related to generalized hypergeometric functions”, Selecta Math. (N. S.), 16:1 (2010), 145–172 | DOI | MR

[11] B. Huard, V. S. Novikov, “On classification of integrable Davey–Stewartson type equations”, J. Phys. A: Math. Theor., 46:27 (2013), 275202, 13 pp. | DOI | MR

[12] E. V. Ferapontov, V. S. Novikov, I. Roustemoglou, “On the classification of discrete Hirota-type equations in 3D”, Int. Math. Res. Not. IMRN, 2015:13 (2015), 4933–4974 | DOI | MR

[13] V. E. Adler, A. I. Bobenko, Yu. B. Suris, “Classification of integrable equations on quad-graphs. The consistency approach”, Commun. Math. Phys., 233:3 (2003), 513–543 | DOI | MR

[14] V. E. Adler, A. I. Bobenko, Yu. B. Suris, “Classification of integrable discrete equations of octahedron type”, Int. Math. Res. Not. IMRN, 2012:8 (2012), 1822–1889 | DOI | MR

[15] M. V. Pavlov, “Klassifikatsiya integriruemykh egorovskikh gidrodinamicheskikh tsepochek”, TMF, 138:1 (2004), 55–70 | DOI | DOI | MR | Zbl

[16] L. V. Bogdanov, B. G. Konopelchenko, “On dispersionless BKP hierarchy and its reductions”, J. Nonlinear Math. Phys., 12:suppl. 1 (2005), 64–73 | DOI | MR

[17] D. M. J. Calderbank, B. Kruglikov, “Integrability via geometry: dispersionless differential equations in three and four dimensions”, Commun. Math. Phys., 382:3 (2021), 1811–1841 | DOI | MR

[18] M. N. Kuznetsova, I. T. Khabibullin, A. R. Khakimova, “K zadache o klassifikatsii integriruemykh tsepochek s tremya nezavisimymi peremennymi”, TMF, 215:2 (2023), 242–268 | DOI | DOI

[19] I. Habibullin, “Characteristic Lie rings, finitely-generated modules and integrability conditions for $(2+1)$-dimensional lattices”, Phys. Scr., 87:6 (2013), 065005, 5 pp. | DOI | Zbl

[20] M. N. Poptsova, I. T. Khabibullin, “Algebraicheskie svoistva kvazilineinykh dvumerizovannykh tsepochek, svyazannye s integriruemostyu”, Ufimsk. matem. zhurn., 10:3 (2018), 89–109 | DOI

[21] I. T. Habibullin, A. R. Khakimova, “Characteristic Lie algebras of integrable differential-difference equations in 3D”, J. Phys. A: Math. Theor., 54:29 (2021), 295202, 34 pp. | DOI | MR | Zbl

[22] I. T. Khabibullin, M. N. Kuznetsova, “O klassifikatsionnom algoritme integriruemykh dvumerizovannykh tsepochek na osnove algebr Li–Rainkharta”, TMF, 203:1 (2020), 161–173 | DOI | DOI | MR

[23] E. V. Ferapontov, I. T. Habibullin, M. N. Kuznetsova, V. S. Novikov, “On a class of 2D integrable lattice equations”, J. Math. Phys., 61:7 (2020), 073505, 15 pp. | DOI | MR

[24] G. Darboux, Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal. Quatrième partie, Gauthier-Villars, Paris, 1887–1896 | MR

[25] A. B. Shabat, R. I. Yamilov, Eksponentsialnye sistemy tipa I i matritsy Kartana, Preprint BFAN SSSR, Ufa, 1981

[26] A. N. Leznov, V. G. Smirnov, A. B. Shabat, “Gruppa vnutrennikh simmetrii i usloviya integriruemosti dvumernykh dinamicheskikh sistem”, TMF, 51:1 (1982), 10–21 | DOI | MR | Zbl

[27] A. V. Zhiber, R. D. Murtazina, I. T. Khabibullin, A. B. Shabat, Kharakteristicheskie koltsa Li i nelineinye integriruemye uravneniya, Institut kompyuternykh issledovanii, M.–Izhevsk, 2012

[28] V. E. Adler, S. Ya. Startsev, “O diskretnykh analogakh uravneniya Liuvillya”, TMF, 121:2 (1999), 271–284 | DOI | DOI | MR | Zbl

[29] I. Habibullin, N. Zheltukhina, A. Pekcan, “On the classification of Darboux integrable chains”, J. Math. Phys., 49:10 (2008), 102702, 39 pp. | DOI | MR

[30] I. Habibullin, N. Zheltukhina, A. Pekcan, “Complete list of Darboux integrable chains of the form $t_{1x}=t_x+d(t,t_1)$”, J. Math. Phys., 50:10 (2009), 102710, 23 pp. | DOI | MR

[31] S. V. Smirnov, “Integriruemost po Darbu diskretnykh dvumerizovannykh tsepochek Tody”, TMF, 182:2 (2015), 231–255 | DOI | DOI | MR

[32] A. V. Zhiber, M. N. Kuznetsova, “Integraly i kharakteristicheskie koltsa Li poludiskretnykh sistem uravnenii”, Ufimsk. matem. zhurn., 13:2 (2021), 25–35 | DOI | MR

[33] I. T. Khabibullin, A. R. Khakimova, “Integraly i kharakteristicheskie algebry sistem diskretnykh uravnenii na pryamougolnom grafe”, TMF, 213:2 (2022), 320–346 | DOI | DOI | MR

[34] V. E. Adler, “The tangential map and associated integrable equations”, J. Phys. A: Math. Theor., 42:33 (2009), 332004, 12 pp. | DOI | MR

[35] G. S. Rinehart, “Differential forms for general commutative algebras”, Trans. Amer. Math. Soc., 108 (1963), 195–222 | DOI | MR

[36] M. N. Kuznetsova, Chastnoe soobschenie, 2023

[37] I. T. Habibullin, A. R. Khakimova, A. U. Sakieva, “Miura-type transformations for integrable lattices in 3D”, Mathematics, 11:16 (2023), 3522, 15 pp. | DOI