Lie group geometry. Invariant metrics and dynamical systems, dual algebra, and their applications in the group analysis of a one-dimensional kinetic equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 1, pp. 127-141 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

On a Lie group, we introduce a family of group-invariant metrics and show that the curves invariant under this group are spirals in all the introduced metrics (i.e., they have constant curvatures). An important role is played by an algebra, which we call dual, defined on the same group. The main relation between these algebras is that the trajectories of the one-parameter groups generated by one algebra are invariant curves in the metric that is invariant under the other algebra. The fact that these curves are spirals distinguishes our approach from that of Cartan, who considered the trajectories of one-parameter groups as geodesics in some metric. The presented results are related to the analysis of the geometric meaning of the previously obtained classification of one-dimensional kinetic equations, where invariant curves are the trajectories of particles.
Keywords: group geometry, group analysis, one-dimensional kinetic equation, dual algebra, Frenet formulas.
@article{TMF_2023_217_1_a7,
     author = {A. V. Borovskikh},
     title = {Lie group geometry. {Invariant} metrics and dynamical systems, dual algebra, and their applications in the~group analysis of a~one-dimensional kinetic equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {127--141},
     year = {2023},
     volume = {217},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_1_a7/}
}
TY  - JOUR
AU  - A. V. Borovskikh
TI  - Lie group geometry. Invariant metrics and dynamical systems, dual algebra, and their applications in the group analysis of a one-dimensional kinetic equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 127
EP  - 141
VL  - 217
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_217_1_a7/
LA  - ru
ID  - TMF_2023_217_1_a7
ER  - 
%0 Journal Article
%A A. V. Borovskikh
%T Lie group geometry. Invariant metrics and dynamical systems, dual algebra, and their applications in the group analysis of a one-dimensional kinetic equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 127-141
%V 217
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2023_217_1_a7/
%G ru
%F TMF_2023_217_1_a7
A. V. Borovskikh. Lie group geometry. Invariant metrics and dynamical systems, dual algebra, and their applications in the group analysis of a one-dimensional kinetic equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 1, pp. 127-141. http://geodesic.mathdoc.fr/item/TMF_2023_217_1_a7/

[1] E. Kartan, “Geometriya grupp preobrazovanii”: E. Kartan, Geometriya grupp Li i simmetricheskie prostranstva. (Cbornik statei), IL, M., 1949, 7–111 | Zbl

[2] B. A. Rozenfeld, M. P. Zamakhovskii, Geometriya grupp Li. Simmetricheskie, parabolicheskie i periodicheskie prostranstva, MTsNMO, M., 2003 | MR

[3] S. Khelgason, Differentsialnaya geometriya, gruppy Li i simmetricheskie prostranstva, Faktorial Press, M., 2005 | DOI | MR | Zbl

[4] K. S. Platonova, A. V. Borovskikh, “Gruppovoi analiz odnomernogo uravneniya Boltsmana III. Uslovie sokhraneniya fizicheskogo smysla momentnykh velichin”, TMF, 195:3 (2018), 451–482 | DOI | DOI | MR

[5] K. S. Platonova, A. V. Borovskikh, “Gruppovoi analiz odnomernogo uravneniya Boltsmana. Invarianty i problema zamykaniya momentnoi sistemy”, TMF, 208:3 (2021), 367–386 | DOI | DOI