@article{TMF_2023_217_1_a4,
author = {Yu. M. Pismak},
title = {Entangled states in a~simple model of quantum electrodynamics},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {77--85},
year = {2023},
volume = {217},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_1_a4/}
}
Yu. M. Pismak. Entangled states in a simple model of quantum electrodynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 1, pp. 77-85. http://geodesic.mathdoc.fr/item/TMF_2023_217_1_a4/
[1] D. Bouwmeester, A. K. Ekert, A. Zeilinger (eds.), The Physics of Quantum Information. Quantum Cryptography, Quantum Teleportation, Quantum Computation, Springer, Berlin, 2000 | DOI | MR
[2] M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information, Cambridge Univ. Press, Cambridge, 2000 | DOI | MR
[3] K. A. Valiev, “Kvantovye kompyutery i kvantovye vychisleniya”, UFN, 175:1 (2005), 3–39 | DOI | DOI
[4] M. Le Bellac, A Short Introduction to Quantum Information and Quantum Computation, Cambridge Univ. Press, Cambridge, 2006 | DOI | MR
[5] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1976 | MR | MR
[6] B. B. Berestetskii, E. M. Lifshits, L. P. Pitaevskii, Teoreticheskaya fizika, v. 4, Kvantovaya elektrodinamika, Fizmatlit, M., 2002 | MR
[7] S. S. Shveber, Vvedenie v relyativistskuyu kvantovuyu teoriyu polya, IL, M., 1963 | MR
[8] K. Itsikson, Zh.-B. Zyuber, Kvantovaya teoriya polya, v. 1, 2, Mir, M., 1984 | MR
[9] M. Peskin, D. Shreder, Vvedenie v kvantovuyu teoriyu polya, NITs “Regulyarnaya i khaoticheskaya dinamika”, Izhevsk, 2001 | MR
[10] A. Einstein, B. Podolsky, N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?”, Phys. Rev., 47:10 (1935), 777–780 | DOI
[11] J. S. Bell, “On the Einstein–Podolsky–Rosen paradox”, Physics Physique Fizika, 1:3 (1964), 195–200 | DOI | MR
[12] J. S. Bell, Speakable and Unspeakable in Quantum Mechanics, Cambridge Univ. Press, Cambridge, 2004 | DOI | MR
[13] A. A. Grib, “Neravenstva Bella i eksperimentalnaya proverka kvantovykh korrelyatsii na makroskopicheskikh rasstoyaniyakh”, UFN, 142:4 (1984), 619–634 | DOI | DOI | MR
[14] N. V. Evdokimov, D. N. Klyshko, V. P. Komolov, V. A. Yarochkin, “Neravenstva Bella i korrelyatsii EPR-Boma: deistvuyuschaya klassicheskaya radiochastotnaya model”, UFN, 166:1 (1996), 91–107 | DOI
[15] A. Peres, “All the Bell inequalities”, Found. Phys., 29:4 (1999), 589–614 | DOI | MR
[16] K. Symanzik, “Schrödinger representation and Casimir effect in renormalizable quantum field theory”, Nucl. Phys. B, 190:1 (1981), 1–44 | DOI
[17] V. N. Markov, Yu. M. Pis'mak, “Casimir effect for thin films in QED”, J. Phys. A: Math. Gen., 39:21 (2006), 6525–6532, arXiv: hep-th/0505218 | DOI | MR
[18] V. N. Marachevsky, Yu. M. Pis'mak, “Casimir–Polder effect for a plane with Chern–Simons interaction”, Phys. Rev. D, 81:6 (2010), 065005, 6 pp. | DOI
[19] D. Yu. Pis'mak, Yu. M. Pis'mak, F. J. Wegner, “Electromagnetic waves in a model with Chern–Simons ponential”, Phys. Rev. E, 92:1 (2015), 013204, 7 pp. | DOI | MR
[20] D. Yu. Pismak, Yu. M. Pismak, “Modelirovanie vzaimodeistviya materialnoi ploskosti so spinornym polem v ramkakh podkhoda Simanzika”, TMF, 184:3 (2015), 505–519 | DOI | DOI | MR