@article{TMF_2023_217_1_a11,
author = {T. I. Rouabhia and A. Boumali},
title = {Statistical properties of the~one-dimensional {Dirac} oscillator in {Rindler} space{\textendash}time},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {220--232},
year = {2023},
volume = {217},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_1_a11/}
}
TY - JOUR AU - T. I. Rouabhia AU - A. Boumali TI - Statistical properties of the one-dimensional Dirac oscillator in Rindler space–time JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 220 EP - 232 VL - 217 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2023_217_1_a11/ LA - ru ID - TMF_2023_217_1_a11 ER -
T. I. Rouabhia; A. Boumali. Statistical properties of the one-dimensional Dirac oscillator in Rindler space–time. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 1, pp. 220-232. http://geodesic.mathdoc.fr/item/TMF_2023_217_1_a11/
[1] W.-Y. Tsai, A. Yildiz, “Motion of charged particles in a homogeneous magnetic field”, Phys. Rev. D., 4:12 (1971), 3643–3648 ; T. Goldman, W.-Y. Tsai, “Motion of charged particles in a homogeneous magnetic field. II”, 3648–3651 | DOI | DOI
[2] L. D. Krase, Pao Lu, R. H. Good, Jr., “Stationary states of a spin-1 particle in a constant magnetic field”, Phys. Rev. D., 3:6 (1971), 1275–1279 | DOI
[3] D. Itô, K. Mori, E. Carriere, “An example of dynamical systems with linear trajectory”, Nuovo Cim. A, 51:4 (1967), 1119–1121 | DOI
[4] M. Moshinsky, A. Szczepaniak, “The Dirac oscillator”, J. Phys. A: Math. Gen., 22:17 (1989), L817–L819 | DOI | MR
[5] C. Quesne, M. Moshinsky, “Symmetry Lie algebra of the Dirac oscillator”, J. Phys. A: Math. Gen, 23:12 (1990), 2263–2272 | DOI | MR
[6] R. P. Martínez-y-Romero, A. L. Salas-Brito, “Conformal invariance in a Dirac oscillator”, J. Math. Phys., 33:5 (1992), 1831–1836 | DOI | MR
[7] M. Moreno, A. Zentella, “Covariance, CPT and the Foldy–Wouthuysen transformation for the Dirac oscillator”, J. Phys. A: Math. Gen., 22:17 (1989), L821–L825 | DOI | MR
[8] W. Rindler, Essential Relativity: Special, General, and Cosmological, Springer, Berlin, 1977 | DOI | MR
[9] W. Rindler, “General Relativity”, Book review, Science, 230:4731 (1985), 1268–1269 | DOI
[10] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 2, Teoriya polya, Fizmatlit, M., 1988 | MR
[11] L. Parker, “One-electron atom in curved space-time”, Phys. Rev. Lett., 44:23 (1980), 1559–1562 ; “One-electron atom as a probe of spacetime curvature”, Phys. Rev. D, 22:8 (1980), 1922–1934 ; “Self-forces and atoms in gravitational fields”, 24:2 (1981), 535–537 ; “The atom as a probe of curved space-time”, Gen. Relat. Gravit., 13:4 (1981), 307–311 | DOI | MR | DOI | DOI | DOI
[12] L. C. N. Santos, C. C. Barros, Jr., “Dirac equation and the Melvin metric”, Eur. Phys. J. C, 76:10 (2016), 560, 7 pp. ; “Scalar bosons under the influence of noninertial effects in the cosmic string spacetime”, 77:3 (2017), 186, 7 pp. | DOI | DOI
[13] M. H Pacheco, R. R Landim, C. A. S. Almeida, “One-dimensional Dirac oscillator in a thermal bath”, Phys. Lett. A, 311:2–3 (2003), 93–96 | DOI | MR
[14] M.-A. Dariescu, C. Dariescu, “Persistent currents and critical magnetic field in planar dynamics of charged bosons”, J. Phys.: Condens. Matter, 19:25 (2007), 256203, 9 pp. | DOI
[15] M.-A. Dariescu, C. Dariescu, “Finite temperature analysis of quantum Hall-type behavior of charged bosons”, Chaos Solitons Fractals, 33:3 (2007), 776–781 | DOI
[16] A. Boumali, “The one-dimensional thermal properties for the relativistic harmonic oscillators”, Electronic J. Theor. Phys., 12:32 (2015), 121–130, arXiv: 1409.6205
[17] E. Elizalde, S. D. Odintsov, A. Romeo, A. A. Bytsenko, S. Zerbini, Zeta Regularization Techniques with Applications, World Sci., Singapore, 1994 ; E. Elizalde, Ten Physical Applications of Spectral Zeta Functions, Lecture Notes in Physics, 855, Springer, Berlin, 2012 | DOI | MR | DOI | MR
[18] L. C. N. Santos, C. E. Mota, C. C. Barros, Jr., L. B. Castro, V. B. Bezerra, “Quantum dynamics of scalar particles in the space-time of a cosmic string in the context of gravity's rainbow”, Ann. Physics, 421 (2020), 168276, 14 pp. | DOI | MR
[19] R. Szmytkowski, M. Gruchowski, “Completeness of the Dirac oscillator eigenfunctions”, J. Phys. A: Math. Gen., 34:23 (2001), 4991–4997 | DOI | MR
[20] A. Boumali, T. I. Rouabhia, “The thermal properties of the one-dimensional boson particles in Rindler spacetime”, Phys. Lett. A, 385 (2021), 126985, 8 pp. | DOI | MR
[21] V. Mukhanov, S. Winitzk, Introduction to Quantum Effects in Gravity, Cambridge Univ. Press, Cambridge, 2007 | MR
[22] M. Nakahara, Geometry, Topology and Physics, Graduate Student Series in Physics, Institute of Physics, Bristol, 2003 | MR | Zbl
[23] R. A. Bertlmann, Anomalies in Quantum Field Theory, International Series of Monographs on Physics, Oxford Univ. Press, New York, 2000 | DOI
[24] S. K. Moayedi, F. Darabi, “Exact solutions of Dirac equation on a 2D gravitational background”, Phys. Lett. A, 322:3–4 (2004), 173–178 | DOI | MR
[25] R. Jackiw, C. Rebbi, “Solitons with fermion number $1/2$”, Phys. Rev. D, 13:12 (1976), 3398–3409 | DOI | MR
[26] L. C. N. Santos, C. C. Barros, “Fermions in the Rindler spacetime”, Internat. J. Geom. Methods Modern Phys., 16:9 (2019), 1950140, 10 pp. | DOI | MR
[27] S. Flügge, “Practical Quantum Mechanics”, Book rewiews, Amer. J. Phys., 41:1 (1973), 140 | DOI | MR
[28] S. Flügge, Practical Quantum Mechanics, Classics in Mathematics, Springer, Berlin, Heidelberg, 2012 | DOI | MR
[29] J. Carvalho, C. Furtado, F. Moraes, “Dirac oscillator interacting with a topological defect”, Phys. Rev. A, 84:3 (2011), 032109, 6 pp. | DOI
[30] A. Boumali, N. Messai, “Klein–Gordon oscillator under a uniform magnetic field in cosmic string space-time”, Can. J. Phys., 92:11 (2014), 1460–1463 | DOI
[31] A. Boumali, A. Hafdallah, A. Toumi, “Comment on ‘Energy profile of the one-dimensional Klein–Gordon oscillator’ ”, Phys. Scr., 84:3 (2011), 037001, 3 pp. | DOI
[32] A. M. Frassino, D. Marinelli, O. Panella, P. Roy, “Thermodynamics of quantum phase transitions of a Dirac oscillator in a homogenous magnetic field”, J. Phys. A: Math. Theor, 53:18 (2020), 185204, 19 pp. | DOI | MR
[33] A. Boumali, F. Serdouk, S. Dilmi, “Superstatistical properties of the one-dimensional Dirac oscillator”, Phys. A, 533 (2020), 124207, 13 pp. | DOI | MR
[34] J. D. Castano-Yepes, I. A. Lujan-Cabrera, C. F. Ramirez-Gutierrez, “Comments on superstatistical properties of the one-dimensional Dirac oscillator by Abdelmalek Boumali et al.”, Phys. A, 580 (2021), 125206, 7 pp. | DOI | MR
[35] M. Moreno, R. Martínez, A. Zentella, “Supersymmetry, Foldy–Wouthuysen transformation and stability of the Dirac sea”, Modern Phys. Lett. A., 5:12 (1990), 949–954 | DOI | MR
[36] L. L. Foldy, S. A. Wouthuysen, “On the Dirac theory of spin 1/2 particles and its non-relativistic limit”, Phys. Rev., 78:1 (1950), 29–36 | DOI
[37] N. M. Myers, O. Abah, S. Deffner, “Quantum Otto engines at relativistic energies”, New. J. Phys., 23 (2021), 105001, 16 pp. | DOI | MR
[38] A. Boumali, H. Hassanabadi, “The thermal properties of a two-dimensional Dirac oscillator under an external magnetic field”, Eur. Phys. J. Plus, 128:10 (2013), 124, 18 pp. | DOI