Revised Riemann–Hilbert problem for the derivative nonlinear
Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 1, pp. 204-219 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

With a vanishing boundary condition, we consider a revised Riemann–Hilbert problem (RHP) for the derivative nonlinear Schrödinger equation (DNLS), where an integral factor is introduced such that the RHP satisfies the normalization condition. In the reflectionless situation, we construct the formulas for the $N$th-order solutions of the DNLS equation, including the solitons and positons that respectively correspond to $N$ pairs of simple poles and one pair of $N$th-order poles of the RHP. According to the Cauchy–Binet formula, we show the expressions for $N$th-order solitons. Additionally, we give an explicit expression for the second-order positon and graphically describe evolutions of the third-order and fourth-order positons.
Keywords: DNLS, inverse scattering method, Riemann–Hilbert problem
Mots-clés : soliton.
@article{TMF_2023_217_1_a10,
     author = {Yongshuai Zhang and Haibing Wu and Deqin Qiu},
     title = {Revised {Riemann{\textendash}Hilbert} problem for the~derivative nonlinear},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {204--219},
     year = {2023},
     volume = {217},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_1_a10/}
}
TY  - JOUR
AU  - Yongshuai Zhang
AU  - Haibing Wu
AU  - Deqin Qiu
TI  - Revised Riemann–Hilbert problem for the derivative nonlinear
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 204
EP  - 219
VL  - 217
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_217_1_a10/
LA  - ru
ID  - TMF_2023_217_1_a10
ER  - 
%0 Journal Article
%A Yongshuai Zhang
%A Haibing Wu
%A Deqin Qiu
%T Revised Riemann–Hilbert problem for the derivative nonlinear
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 204-219
%V 217
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2023_217_1_a10/
%G ru
%F TMF_2023_217_1_a10
Yongshuai Zhang; Haibing Wu; Deqin Qiu. Revised Riemann–Hilbert problem for the derivative nonlinear. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 1, pp. 204-219. http://geodesic.mathdoc.fr/item/TMF_2023_217_1_a10/

[1] A. Rogister, “Parallel propagation of nonlinear low-frequency waves in high-$\beta$ plasma”, Phys. Fluids, 14:12 (1971), 2733–2739 | DOI

[2] K. Mio, T. Ogino, K. Minami, S. Takeda, “Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas”, J. Phys. Soc. Japan, 41:1 (1976), 265–271 | DOI | MR

[3] E. Mjølhus, “On the modulational instability of hydromagnetic waves parallel to the magnetic field”, J. Plasma Phys., 16:3 (1976), 321–334 | DOI

[4] E. Mjølhus, T. Hada, “Soliton theory of quasi-parallel MHD waves”, Nonlinear Waves and Chaos in Space Plasmas, eds. T. Hada, H. Matsumoto, Terra Sci., Tokyo, 1977, 121–169

[5] E. Mjølhus, “Nonlinear Alfvén waves and the DNLS equation: oblique aspects”, Phys. Scr., 40:2 (1989), 227–237 | DOI

[6] S. R. Spangler, “Nonlinear evolution of MHD waves at the Earth's bow shock”, Nonlinear Waves and Chaos in Space Plasmas, eds. T. Hada, H. Matsumoto, Terra Sci., Tokyo, 1977, 171–224

[7] K. Baumgärtel, “Soliton approach to magnetic holes”, J. Geophys. Res., 104:A12 (1999), 28295–28308 | DOI

[8] C. F. Kennel, B. Buti, T. Hada, R. Pellat, “Nonlinear, dispersive, elliptically polarized Alfvén waves”, Phys. Fluids, 31:7 (1988), 1949–1961 | DOI | MR

[9] D. J. Kaup, A. C. Newell, “An exact solution for a derivative nonlinear Schrödinger equation”, J. Math. Phys., 19:4 (1978), 798–801 | DOI | MR

[10] G.-Q. Zhou, N.-N. Huang, “An $N$-soliton solution to the DNLS equation based on revised inverse scattering transform”, J. Phys. A: Math. Theor., 40:45 (2007), 13607–13623 | DOI | MR

[11] C.-N. Yang, J.-L. Yu, H. Cai, N.-N. Huang, “Inverse scattering transform for the derivative nonlinear Schrödinger equation”, Chinese Phys. Lett., 25:2 (2008), 421–424 | DOI

[12] G. Zhang, Z. Yan, “The derivative nonlinear Schrödinger equation with zero/nonzero boundary conditions: Inverse scattering transforms and $N$-double-pole solutions”, J. Nonlinear Sci., 30:6 (2020), 3089–3127 | DOI | MR

[13] Y. Zhang, X. Tao, S. Xu, “The bound-state soliton solutions of the complex modified KdV equation”, Inverse Problems, 36:6 (2020), 065003, 17 pp. | DOI | MR

[14] H. Steudel, “The hierarchy of multi-soliton solutions of the derivative nonlinear Schrödinger equation”, J. Phys. A: Math. Gen., 36:7 (2003), 1931–1946 | DOI | MR

[15] S. W. Xu, J. S. He, L. H. Wang, “The Darboux transformation of the derivative nonlinear Schrödinger equation”, J. Phys. A: Math. Theor., 44:30 (2011), 305203, 22 pp. | DOI | MR

[16] Y. Zhang, D. Qiu, J. He, “Explicit $N$th order solutions of Fokas–Lenells equation based on revised Riemann–Hilbert approach”, J. Math. Phys., 64:5 (2023), 053502, 14 pp. | DOI | MR

[17] Y. Xiao, E. Fan, “A Riemann–Hilbert approach to the Harry-Dym equation on the line”, Chinese Ann. Math. Ser. B, 37:3 (2016), 373–384 | DOI | MR

[18] Y. Zhang, J. Rao, Y. Cheng, J. He, “Riemann–Hilbert method for the Wadati–Konno–Ichikawa equation: $N$ simple poles and one higher-order pole”, Phys. D, 399 (2019), 173–185 | DOI | MR

[19] L. Ai, J. Xu, “On a Riemann–Hilbert problem for the Fokas–Lenells equation”, Appl. Math. Lett., 87 (2019), 57–63 | DOI | MR

[20] X. Ma, “Riemann–Hilbert approach for a higher-order Chen–Lee–Liu equation with high-order poles”, Commun. Nonlinear Sci. Numer. Simul., 114 (2022), 106606, 14 pp. | DOI | MR

[21] Z.-X. Zhou, “Darboux transformations and global solutions for a nonlocal derivative nonlinear Schrödinger equation”, Commun. Nonlinear Sci. Numer. Simul., 62 (2018), 480–488 | DOI | MR

[22] Sin-Sin Ma, Yun-Khuei Kuan, “Obratnoe preobrazovanie rasseyaniya dlya nelokalnogo nelineinogo uravneniya Shredingera s proizvodnoi”, TMF, 210:1 (2022), 38–53 | DOI | DOI | MR

[23] M. J. Ablowitz, X.-D. Luo, Z. H. Musslimani, Y. Zhu, “Integrable nonlocal derivative nonlinear Schrödinger equations”, Inverse Problems, 38:6 (2022), 065003, 34 pp. | DOI | MR

[24] J. Lenells, “The solution of the global relation for the derivative nonlinear Schrödinger equation on the half-line”, Phys. D, 240:6 (2011), 512–525 | DOI | MR

[25] A. S. Fokas, J. Lenells, “The unified method: I. Nonlinearizable problems on the half-line”, J. Phys. A: Math. Theor., 45:19 (2012), 195201, 38 pp. | DOI | MR

[26] J. Lenells, A. S. Fokas, “The unified method: II. NLS on the half-line with $t$-periodic boundary conditions”, J. Phys. A: Math. Theor., 45:19 (2012), 195202, 36 pp. ; “The unified method: III. Nonlinearizable problems on the interval”, 195203, 21 pp. | DOI | MR | DOI | MR

[27] B.-B. Hu, T.-C. Xia, N. Zhang, J.-B. Wang, “Initial-boundary value problems for the coupled higher-order nonlinear Schrödinger equations on the half-line”, Internat. J. Nonlinear Numer. Simul., 19:1 (2018), 83–92 | DOI | MR

[28] B. Hu, L. Zhang, T. Xia, Z. Ning, “On the Riemann–Hilbert problem of the Kundu equation”, Appl. Math. Comput., 381 (2020), 125262, 14 pp. | MR

[29] B. Hu, L. Zhang, N. Zhang, “On the Riemann–Hilbert problem for the mixed Chen–Lee–Liu derivative nonlinear Schrödinger equation”, J. Comput. Appl. Math., 390 (2021), 113393, 14 pp. | DOI | MR