Mots-clés : soliton.
@article{TMF_2023_217_1_a10,
author = {Yongshuai Zhang and Haibing Wu and Deqin Qiu},
title = {Revised {Riemann{\textendash}Hilbert} problem for the~derivative nonlinear},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {204--219},
year = {2023},
volume = {217},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_1_a10/}
}
TY - JOUR AU - Yongshuai Zhang AU - Haibing Wu AU - Deqin Qiu TI - Revised Riemann–Hilbert problem for the derivative nonlinear JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 204 EP - 219 VL - 217 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2023_217_1_a10/ LA - ru ID - TMF_2023_217_1_a10 ER -
Yongshuai Zhang; Haibing Wu; Deqin Qiu. Revised Riemann–Hilbert problem for the derivative nonlinear. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 1, pp. 204-219. http://geodesic.mathdoc.fr/item/TMF_2023_217_1_a10/
[1] A. Rogister, “Parallel propagation of nonlinear low-frequency waves in high-$\beta$ plasma”, Phys. Fluids, 14:12 (1971), 2733–2739 | DOI
[2] K. Mio, T. Ogino, K. Minami, S. Takeda, “Modified nonlinear Schrödinger equation for Alfvén waves propagating along the magnetic field in cold plasmas”, J. Phys. Soc. Japan, 41:1 (1976), 265–271 | DOI | MR
[3] E. Mjølhus, “On the modulational instability of hydromagnetic waves parallel to the magnetic field”, J. Plasma Phys., 16:3 (1976), 321–334 | DOI
[4] E. Mjølhus, T. Hada, “Soliton theory of quasi-parallel MHD waves”, Nonlinear Waves and Chaos in Space Plasmas, eds. T. Hada, H. Matsumoto, Terra Sci., Tokyo, 1977, 121–169
[5] E. Mjølhus, “Nonlinear Alfvén waves and the DNLS equation: oblique aspects”, Phys. Scr., 40:2 (1989), 227–237 | DOI
[6] S. R. Spangler, “Nonlinear evolution of MHD waves at the Earth's bow shock”, Nonlinear Waves and Chaos in Space Plasmas, eds. T. Hada, H. Matsumoto, Terra Sci., Tokyo, 1977, 171–224
[7] K. Baumgärtel, “Soliton approach to magnetic holes”, J. Geophys. Res., 104:A12 (1999), 28295–28308 | DOI
[8] C. F. Kennel, B. Buti, T. Hada, R. Pellat, “Nonlinear, dispersive, elliptically polarized Alfvén waves”, Phys. Fluids, 31:7 (1988), 1949–1961 | DOI | MR
[9] D. J. Kaup, A. C. Newell, “An exact solution for a derivative nonlinear Schrödinger equation”, J. Math. Phys., 19:4 (1978), 798–801 | DOI | MR
[10] G.-Q. Zhou, N.-N. Huang, “An $N$-soliton solution to the DNLS equation based on revised inverse scattering transform”, J. Phys. A: Math. Theor., 40:45 (2007), 13607–13623 | DOI | MR
[11] C.-N. Yang, J.-L. Yu, H. Cai, N.-N. Huang, “Inverse scattering transform for the derivative nonlinear Schrödinger equation”, Chinese Phys. Lett., 25:2 (2008), 421–424 | DOI
[12] G. Zhang, Z. Yan, “The derivative nonlinear Schrödinger equation with zero/nonzero boundary conditions: Inverse scattering transforms and $N$-double-pole solutions”, J. Nonlinear Sci., 30:6 (2020), 3089–3127 | DOI | MR
[13] Y. Zhang, X. Tao, S. Xu, “The bound-state soliton solutions of the complex modified KdV equation”, Inverse Problems, 36:6 (2020), 065003, 17 pp. | DOI | MR
[14] H. Steudel, “The hierarchy of multi-soliton solutions of the derivative nonlinear Schrödinger equation”, J. Phys. A: Math. Gen., 36:7 (2003), 1931–1946 | DOI | MR
[15] S. W. Xu, J. S. He, L. H. Wang, “The Darboux transformation of the derivative nonlinear Schrödinger equation”, J. Phys. A: Math. Theor., 44:30 (2011), 305203, 22 pp. | DOI | MR
[16] Y. Zhang, D. Qiu, J. He, “Explicit $N$th order solutions of Fokas–Lenells equation based on revised Riemann–Hilbert approach”, J. Math. Phys., 64:5 (2023), 053502, 14 pp. | DOI | MR
[17] Y. Xiao, E. Fan, “A Riemann–Hilbert approach to the Harry-Dym equation on the line”, Chinese Ann. Math. Ser. B, 37:3 (2016), 373–384 | DOI | MR
[18] Y. Zhang, J. Rao, Y. Cheng, J. He, “Riemann–Hilbert method for the Wadati–Konno–Ichikawa equation: $N$ simple poles and one higher-order pole”, Phys. D, 399 (2019), 173–185 | DOI | MR
[19] L. Ai, J. Xu, “On a Riemann–Hilbert problem for the Fokas–Lenells equation”, Appl. Math. Lett., 87 (2019), 57–63 | DOI | MR
[20] X. Ma, “Riemann–Hilbert approach for a higher-order Chen–Lee–Liu equation with high-order poles”, Commun. Nonlinear Sci. Numer. Simul., 114 (2022), 106606, 14 pp. | DOI | MR
[21] Z.-X. Zhou, “Darboux transformations and global solutions for a nonlocal derivative nonlinear Schrödinger equation”, Commun. Nonlinear Sci. Numer. Simul., 62 (2018), 480–488 | DOI | MR
[22] Sin-Sin Ma, Yun-Khuei Kuan, “Obratnoe preobrazovanie rasseyaniya dlya nelokalnogo nelineinogo uravneniya Shredingera s proizvodnoi”, TMF, 210:1 (2022), 38–53 | DOI | DOI | MR
[23] M. J. Ablowitz, X.-D. Luo, Z. H. Musslimani, Y. Zhu, “Integrable nonlocal derivative nonlinear Schrödinger equations”, Inverse Problems, 38:6 (2022), 065003, 34 pp. | DOI | MR
[24] J. Lenells, “The solution of the global relation for the derivative nonlinear Schrödinger equation on the half-line”, Phys. D, 240:6 (2011), 512–525 | DOI | MR
[25] A. S. Fokas, J. Lenells, “The unified method: I. Nonlinearizable problems on the half-line”, J. Phys. A: Math. Theor., 45:19 (2012), 195201, 38 pp. | DOI | MR
[26] J. Lenells, A. S. Fokas, “The unified method: II. NLS on the half-line with $t$-periodic boundary conditions”, J. Phys. A: Math. Theor., 45:19 (2012), 195202, 36 pp. ; “The unified method: III. Nonlinearizable problems on the interval”, 195203, 21 pp. | DOI | MR | DOI | MR
[27] B.-B. Hu, T.-C. Xia, N. Zhang, J.-B. Wang, “Initial-boundary value problems for the coupled higher-order nonlinear Schrödinger equations on the half-line”, Internat. J. Nonlinear Numer. Simul., 19:1 (2018), 83–92 | DOI | MR
[28] B. Hu, L. Zhang, T. Xia, Z. Ning, “On the Riemann–Hilbert problem of the Kundu equation”, Appl. Math. Comput., 381 (2020), 125262, 14 pp. | MR
[29] B. Hu, L. Zhang, N. Zhang, “On the Riemann–Hilbert problem for the mixed Chen–Lee–Liu derivative nonlinear Schrödinger equation”, J. Comput. Appl. Math., 390 (2021), 113393, 14 pp. | DOI | MR