Two-species reaction–diffusion system in the presence of
Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 1, pp. 19-29
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study random velocity effects on a two-species reaction–diffusion system consisting of three reaction processes $A+A\to(\varnothing,A)$, $A+B\to A$. Using the field theory perturbative renormalization group, we analyze this system in the vicinity of its upper critical dimension $d_{\mathrm c}=2$. A velocity ensemble is generated by means of stochastic Navier–Stokes equations. In particular, we investigate the effect of thermal fluctuations on the reaction kinetics. The overall analysis is performed in the one-loop approximation and possible macroscopic regimes are identified.
Keywords: renormalization group
Mots-clés : passive scalar advection, reaction–diffusion system.
@article{TMF_2023_217_1_a1,
     author = {M. Gnatich and M. Kecer and T. Lu\v{c}ivjansk\'y},
     title = {Two-species reaction{\textendash}diffusion system in the~presence of},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {19--29},
     year = {2023},
     volume = {217},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_1_a1/}
}
TY  - JOUR
AU  - M. Gnatich
AU  - M. Kecer
AU  - T. Lučivjanský
TI  - Two-species reaction–diffusion system in the presence of
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 19
EP  - 29
VL  - 217
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_217_1_a1/
LA  - ru
ID  - TMF_2023_217_1_a1
ER  - 
%0 Journal Article
%A M. Gnatich
%A M. Kecer
%A T. Lučivjanský
%T Two-species reaction–diffusion system in the presence of
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 19-29
%V 217
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2023_217_1_a1/
%G ru
%F TMF_2023_217_1_a1
M. Gnatich; M. Kecer; T. Lučivjanský. Two-species reaction–diffusion system in the presence of. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 1, pp. 19-29. http://geodesic.mathdoc.fr/item/TMF_2023_217_1_a1/

[1] P. L. Krapivsky, S. Redner, E. Ben-Naim, A Kinetic View of Statistical Physics, Cambridge Univ. Press, Cambridge, 2010 | DOI | MR

[2] G. Ódor, “Universality classes in nonequilibrium lattice systems”, Rev. Modern Phys., 76:3 (2004), 663–724, arXiv: cond-mat/0205644 | DOI | MR

[3] U. C. Täuber, Critical Dynamics: A Field Theory Approach to Equilibrium and Non-Equilibrium Scaling Behavior, Cambridge Univ. Press, Cambridge, 2014 | DOI

[4] U. C. Täuber, M. Howard, B. P. Vollmayr-Lee, “Applications of field-theoretic renormalization group methods to reaction-diffusion problems”, J. Phys. A: Math. Gen., 38:17 (2005), R79–R131 | DOI | MR

[5] A. A. Ovchinnikov, S. F. Timashev, A. A. Belyi, Kinetika diffuzionno-kontroliruemykh khimicheskikh protsessov, Khimiya, M., 1986

[6] R. Rajesh, O. Zaboronski, “Survival probability of a diffusing test particle in a system of coagulating and annihilating random walkers”, Phys. Rev. E, 70:3 (2004), 036111, 9 pp. | DOI

[7] B. Vollmayr-Lee, J. Hanson, R. S. McIsaac, J. D. Hellerick, “Anomalous dimension in a two-species reaction-diffusion system”, J. Phys. A: Math. Theor., 51:3 (2018), 034002, 16 pp. | DOI | MR

[8] J. D. Hellerick, R. C. Rhoades, B. P. Vollmayr-Lee, “Numerical simulation of the trapping reaction with mobile and reacting traps”, Phys. Rev. E, 101:4 (2020), 042112, 10 pp. | DOI

[9] D. Shapoval, V. Blavatska, M. Dudka, “Survival in two-species reaction-diffusion system with Lévy flights: renormalization group treatment and numerical simulations”, J. Phys. A: Math. Theor., 55:45 (2022), 455002, 22 pp. | DOI | MR

[10] D. Forster, D. R. Nelson, M. J. Stephen, “Large-distance and long-time properties of a randomly stirred fluid”, Phys. Rev. A, 16:2 (1977), 732–740 | DOI | MR

[11] L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil'ev, The Field Theoretic Renormalization Group in Fully Developed Turbulence, Gordon and Breach, Amsterdam, 1999 | Zbl

[12] A. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, Izd-vo PIYaF, SPb., 1998 | MR

[13] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Oxford Univ. Press, Oxford, 2002 | DOI

[14] M. Doi, “Second quantization representation for classical many-particle system”, J. Phys. A: Math. Gen., 9:9 (1976), 1465–1478 | DOI

[15] L. Peliti, “Path integral approach to birth-death processes on a lattice”, J. Phys. France, 46:9 (1985), 1469–1484 | DOI

[16] B. P. Lee, “Renormalization group calculation for the reaction $kA \to \varnothing$”, J. Phys. A: Math. Gen., 27:8 (1994), 2633–2652, arXiv: cond-mat/9311064 | DOI

[17] L. D. Landau, E. M. Lifshits, Kurs teoreticheskoi fiziki, v. 6, Gidrodinamika, Nauka, M., 2006 | MR | MR | Zbl

[18] U. Frish, Turbulentnost. Nasledie Kolmogorova, FAZIS, M., 1998 | DOI | MR | Zbl

[19] D. Forster, D. R. Nelson, M. J. Stephen, “Long-time tails and the large-eddy behavior of a randomly stirred fluid”, Phys. Rev. Lett., 36:15 (1976), 867–870 | DOI

[20] M. Hnatič, J. Honkonen, T. Lučivjanský, “Symmetry breaking in stochastic dynamics and turbulence”, Symmetry, 11:10 (2019), 1193, 52 pp. | DOI

[21] J.-M. Park, M. W. Deem, “Disorder-induced anomalous kinetics in the $A+A\to\varnothing$ reaction”, Phys. Rev. E, 57:3 (1998), 3618–3621 | DOI

[22] M. J. E. Richardson, J. Cardy, “The reaction process $A+A\to\varnothing$ in Sinai disorder”, J. Phys. A: Math. Gen., 32:22 (1999), 4035–4045 | DOI | MR

[23] M. W. Deem, J.-M. Park, “Reactive turbulent flow in low-dimensional, disordered media”, Phys. Rev. E, 58:3 (1998), 3233–3228 | DOI

[24] M. Hnatich, J. Honkonen, “Velocity-fluctuation-induced anomalous kinetics of the $A+\vec{A}\to\varnothing$ reaction”, Phys. Rev. E, 61:4 (2000), 3904–3911 | DOI

[25] J. Honkonen, “Anomalous transport processes in chemically active random environment”, Acta Phys. Slovaca, 52:6 (2002), 533–540, arXiv: cond-mat/0207151

[26] M. Gnatich, Yu. Khonkonen, T. Luchivyanski, “Issledovanie anomalnoi kinetiki reaktsii annigilyatsii $A+A\to\varnothing$”, TMF, 169:1 (2011), 137–145 | DOI | DOI | MR