Two-species reaction--diffusion system in the~presence of
Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 1, pp. 19-29
Voir la notice de l'article provenant de la source Math-Net.Ru
We study random velocity effects on a two-species reaction–diffusion system consisting of three reaction processes $A+A\to(\varnothing,A)$, $A+B\to A$. Using the field theory perturbative renormalization group, we analyze this system in the vicinity of its upper critical dimension $d_{\mathrm c}=2$. A velocity ensemble is generated by means of stochastic Navier–Stokes equations. In particular, we investigate the effect of thermal fluctuations on the reaction kinetics. The overall analysis is performed in the one-loop approximation and possible macroscopic regimes are identified.
Keywords:
renormalization group
Mots-clés : passive scalar advection, reaction–diffusion system.
Mots-clés : passive scalar advection, reaction–diffusion system.
@article{TMF_2023_217_1_a1,
author = {M. Gnatich and M. Kecer and T. Lu\v{c}ivjansk\'y},
title = {Two-species reaction--diffusion system in the~presence of},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {19--29},
publisher = {mathdoc},
volume = {217},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_1_a1/}
}
TY - JOUR AU - M. Gnatich AU - M. Kecer AU - T. Lučivjanský TI - Two-species reaction--diffusion system in the~presence of JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 19 EP - 29 VL - 217 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2023_217_1_a1/ LA - ru ID - TMF_2023_217_1_a1 ER -
M. Gnatich; M. Kecer; T. Lučivjanský. Two-species reaction--diffusion system in the~presence of. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 1, pp. 19-29. http://geodesic.mathdoc.fr/item/TMF_2023_217_1_a1/