Noether charge, thermodynamics and phase transition of a black hole in the Schwarzschild–anti-de Sitter–Beltrami spacetime
Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 1, pp. 3-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the thermodynamic properties and Hawking–Page phase transition of a black hole in the Schwarzschild–anti-de Sitter–Beltrami (SAdSB) spacetime. We discuss the Beltrami, or inertial, coordinates of the anti-de Sitter (AdS) spacetime. A transformation between noninertial and inertial coordinates of the AdS spacetime is formulated in order to construct a solution of a spherical gravitating mass and other physical quantities. The Killing vector is determined and used to calculate the event horizon radius of this black hole. The SAdSB black hole entropy and temperature are determined by the Noether charge method; the temperature is shown to be bounded by the AdS radius. Similarly, the Smarr relation and the first law of black hole thermodynamics for the SAdSB spacetime are formulated. The Gibbs free energy and heat capacity of this black hole are calculated and the phase transition between small and large black holes is considered. A first-order phase transition between the thermal AdS spacetime and the large-black-hole phase is also investigated and the Hawking–Page temperature is computed and compared with that of the Schwarzschild-anti-de Sitter black hole.
Keywords: black hole thermodynamics, anti-de Sitter–Beltrami spacetime, Iyer–Wald entropy
Mots-clés : phase transition.
@article{TMF_2023_217_1_a0,
     author = {T. Angsachon and K. Ruenearom},
     title = {Noether charge, thermodynamics and phase transition of a~black hole in {the~Schwarzschild{\textendash}anti-de~Sitter{\textendash}Beltrami} spacetime},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--18},
     year = {2023},
     volume = {217},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_217_1_a0/}
}
TY  - JOUR
AU  - T. Angsachon
AU  - K. Ruenearom
TI  - Noether charge, thermodynamics and phase transition of a black hole in the Schwarzschild–anti-de Sitter–Beltrami spacetime
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 3
EP  - 18
VL  - 217
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_217_1_a0/
LA  - ru
ID  - TMF_2023_217_1_a0
ER  - 
%0 Journal Article
%A T. Angsachon
%A K. Ruenearom
%T Noether charge, thermodynamics and phase transition of a black hole in the Schwarzschild–anti-de Sitter–Beltrami spacetime
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 3-18
%V 217
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2023_217_1_a0/
%G ru
%F TMF_2023_217_1_a0
T. Angsachon; K. Ruenearom. Noether charge, thermodynamics and phase transition of a black hole in the Schwarzschild–anti-de Sitter–Beltrami spacetime. Teoretičeskaâ i matematičeskaâ fizika, Tome 217 (2023) no. 1, pp. 3-18. http://geodesic.mathdoc.fr/item/TMF_2023_217_1_a0/

[1] J. D. Bekenstein, “Black holes and entropy”, Phys. Rev. D, 7:8 (1973), 2333–2346 | DOI | MR

[2] S. W. Hawking, “Gravitational radiation from colliding black holes”, Phys. Rev. Lett., 26:21 (1971), 1344–1346 | DOI

[3] S. W. Hawking, “Particle creation by black holes”, Commun. Math. Phys., 43:3 (1975), 199–220 ; Erratum, 46:2 (1976), 206 | DOI | MR | DOI | MR

[4] J. M. Bardeen, B. Carter, S. W. Hawking, “The four laws of black hole mechanics”, Commun. Math. Phys., 31:2 (1973), 161–170 | DOI | MR

[5] S. W. Hawking, “Black holes and thermodynamics”, Phys. Rev. D, 13:2 (1976), 191–197 | DOI

[6] R. M. Wald, “Black hole entropy is the Noether charge”, Phys. Rev. D, 48:8 (1993), R3427–R3431, arXiv: gr-qc/9307038 | DOI | MR

[7] V. Iyer, R. M. Wald, “Some properties of the Noether charge and a proposal for dynamical black hole entropy”, Phys. Rev. D, 50:2 (1994), 846–864 | DOI | MR

[8] T. Jacobson, G. Kang, R. C. Myers, “On black hole entropy”, Phys. Rev. D, 49:12 (1994), 6587–6598 | DOI | MR

[9] I. D. Novikov, V. P. Frolov, Fizika chernykh dyr, Nauka, M., 1986 | DOI | MR

[10] S. Dutta, R. Gopakumar, “Euclidean and Noetherian entropies in AdS space”, Phys. Rev. D, 74:4 (2006), 044007, 16 pp. | DOI | MR

[11] F. Kottler, “Über die physikalischen Grundlagen der Einsteinschen Gravitationstheorie”, Ann. Phys., 361:14 (1918), 401–462 | DOI | Zbl

[12] S. W. Hawking, D. N. Page, “Thermodynamics of black holes in anti-De Sitter space”, Commun. Math. Phys., 87:4 (1983), 577–588 | DOI | MR

[13] J. Maldacena, “The large-$N$ limit of superconformal field theories and supergravity”, Internat. J. Theor. Phys., 38:4 (1999), 1113–1133, arXiv: hep-th/9711200 | DOI | MR

[14] E. Witten, “Anti-de Sitter space and holography”, Adv. Theor. Math. Phys., 2:2 (1998), 253–291, arXiv: hep-th/9802150 | DOI | MR

[15] O. Aharony, S. S. Gubser, J. Maldacena, H. Ooguri, Y. Oz, “Large $N$ field theories, string theory and gravity”, Phys. Rep., 323:3–4 (2000), 183–386, arXiv: hep-th/9905111 | DOI | MR

[16] D. Kastor, S. Ray, J. Traschen, “Enthalpy and the mechanics of AdS black holes”, Class. Quantum Grav., 26:19 (2009), 195011, 16 pp., arXiv: 0904.2765 | DOI

[17] B. P. Dolan, “Where is the PdV in the first law of black hole thermodynamics?”, Open Questions in Cosmology, IntechOpen Book Series, ed. G. J. Olmo, IntechOpen, 2012, 291–315, arXiv: 1209.1272 | DOI

[18] D. Kubizňák, R. B. Mann, “$P-V$ criticality of charged AdS black holes”, JHEP, 07 (2012), 033, 24 pp., arXiv: 1205.0559 | DOI | MR

[19] D. Kubizňák, R. B. Mann, M. Teo, “Black hole chemistry: thermodynamics with lambda”, Class. Quantum Grav., 34:6 (2017), 063001, 66 pp., arXiv: 1608.06147 | DOI | MR

[20] P. Wang, H. Wu, H. Yang, F. Yao, “Extended phase space thermodynamics for black holes in a cavity”, JHEP, 09 (2020), 154, 18 pp., arXiv: 2006.14349 | DOI | MR

[21] C. V. Johnson, “Holographic heat engines”, Class. Quantum Grav., 31:20 (2014), 205002, arXiv: 1404.5982 | DOI

[22] B. P. Dolan, “Bose condensation and branes”, JHEP, 10 (2014), 179, 7 pp., arXiv: 1406.7267 | DOI | MR

[23] B. P. Dolan, “Pressure and compressibility of conformal field theories from the AdS/CFT correspondence”, Entropy, 18:5 (2016), 169, 14 pp., arXiv: 1603.06279 | DOI

[24] V. G. Czinner, H. Iguchi, “Rényi entropy and the thermodynamic stability of black holes”, Phys. Lett. B, 752 (2016), 306–310, arXiv: 1511.06963 | DOI

[25] V. G. Czinner, H. Iguchi, “Thermodynamics, stability and Hawking–Page transition of Kerr black holes from Rényi statistics”, Eur. Phys. J. C, 77:12 (2017), 892, 18 pp., arXiv: 1702.05341 | DOI

[26] C. Promsiri, E. Hirunsirisawat, W. Liewrian, “Thermodynamics and Van der Waals phase transition of charged black holes in flat spacetime via Rényi statistics”, Phys. Rev. D, 102:6 (2020), 064014, 15 pp., arXiv: 2003.12986 | DOI | MR

[27] C. Promsiri, E. Hirunsirisawat, W. Liewrian, “Solid-liquid phase transition and heat engine in an asymptotically flat Schwarzschild black hole via the Rényi extended phase space approach”, Phys. Rev. D, 104:6 (2021), 064004, 15 pp. | DOI | MR

[28] C. Promsiri, E. Hirunsirisawat, R. Nakarachinda, “Emergent phase, thermodynamic geometry, and criticality of charged black holes from Rényi statistics”, Phys. Rev. D, 105:12 (2022), 124049, 22 pp., arXiv: 2204.13023 | DOI | MR

[29] L. Tannukij, P. Wongjun, E. Hirunsirisawat, T. Deesuwan, C. Promsiri, “Thermodynamics and phase transition of spherically symmetric black hole in de Sitter space from Rényi statistics”, Eur. Phys. J. Plus, 135:6 (2020), 500, 17 pp., arXiv: 2002.00377 | DOI

[30] D. Samart, P. Channuie, “AdS to dS phase transition mediated by thermalon in Einstein–Gauss–Bonnet gravity from Rényi statistics”, Nucl. Phys. B, 989 (2023), 16, 116140 pp., arXiv: 2012.14828 | DOI | MR

[31] R. Nakarachinda, E. Hirunsirisawat, L. Tannukij, P. Wongjun, “Effective thermodynamical system of Schwarzschild–de Sitter black holes from Rényi statistics”, Phys. Rev. D, 104:6 (2021), 064003, 21 pp., arXiv: 2106.02838 | DOI | MR

[32] H.-Y. Guo, C.-G. Huang, Z. Xu, B. Zhou, “On Beltrami model of de Sitter spacetime”, Modern Phys. Lett. A, 19:22 (2004), 1701–1709, arXiv: hep-th/0311156 | DOI | MR

[33] M.-L. Yan, N.-C. Xiao, W. Huang, S. Li, “Hamiltonian formalism of the de-Sitter invariant special relativity”, Commun. Theor. Phys., 48:1 (2007), 27–36, arXiv: hep-th/0512319 | DOI | MR

[34] H.-Y. Guo, “Special relativity and theory of gravity via maximum symmetry and localization”, Sci. China Ser. A, 51:4 (2008), 568–603, arXiv: 0707.3855 | DOI

[35] S. N. Manida, “Obobscheniya relyativistskoi kinematiki”, TMF, 169:2 (2011), 323–336, arXiv: 1111.3676 | DOI | DOI | MR

[36] M.-L. Yan, De Sitter Invariant Special Relativity, World Sci., Singapore, 2015

[37] T. Angsachon, S. N. Manida, M. E. Chaikovskii, “Zakony sokhraneniya dlya klassicheskikh chastits v prostranstve anti-de Sittera–Beltrami”, TMF, 176:1 (2013), 13–21, arXiv: 1812.01381 | DOI | DOI | MR | Zbl

[38] H.-Y. Guo, C.-G. Huang, B. Zhou, “Temperature at horizon in de Sitter spacetime”, Europhys. Lett., 72:6 (2005), 1045–1051, arXiv: hep-th/0404010 | DOI

[39] T. Angsachon, S. N. Manida, “Reshenie Shvartsshilda v $R$-prostranstve”, Vestn. S.-Peterb. un-ta. Ser. 4. Fizika, Khimiya, 2013, no. 2, 14–19, arXiv: 1301.4198

[40] L.-F. Sun, M.-L. Yan, Y. Deng, W. Huang, S. Hu, “Schwarzschild–de Sitter metric and inertial Beltrami coordinates”, Modern Phys. Lett. A, 28:29 (2013), 1350114, 19 pp., arXiv: 1308.5222 | DOI | MR

[41] H. Liu, X.-H. Meng, “Thermodynamics of Schwarzschild–Beltrami–de Sitter black hole”, Modern Phys. Lett. A, 32:27 (2017), 1750146, 18 pp., arXiv: 1611.03604 | DOI | MR

[42] M. Urano, A. Tomimatsu, H. Saida, “The mechanical first law of black hole spacetimes with cosmological constant and its application to Schwarzschild–de Sitter spacetime”, Class. Quantum Grav., 26:10 (2009), 105010, 14 pp., arXiv: 0903.4230 | DOI | MR

[43] B. P. Dolan, “Vacuum energy and the latent heat of AdS–Kerr black holes”, Phys. Rev. D, 90:8 (2014), 084002, 8 pp., arXiv: 1407.4037 | DOI

[44] P. Basu, C. Krishnan, P. N. Bala Subramanian, “Hairy black holes in a box”, JHEP, 11 (2016), 041, 23 pp., arXiv: 1609.01208 | DOI | MR

[45] R. Li, J. Wang, “Thermodynamics and kinetics of Hawking–Page phase transition”, Phys. Rev. D, 102:2 (2020), 024085, 16 pp. | DOI | MR

[46] R. André, J. P. S. Lemos, “Thermodynamics of five-dimensional Schwarzschild black holes in the canonical ensemble”, Phys. Rev. D, 102:2 (2020), 024006, 12 pp. | DOI | MR