Strong decays of the charmonium-like state $Y(4230)$ and radiative transitions of low-lying charmoniums
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 3, pp. 490-503 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The recently reported strong decays of the charmonium-like state $Y(4230)$ by the BESIII collaboration and the dominant radiative transitions of the charmonium low-lying excited states are studied within a covariant quark model by involving the analytic confinement concept. The $Y(4230)$ resonance is interpreted as a four-quark state of molecular type. We use the compositeness condition to eliminate any constituent degrees of freedom from the space of physical states and rigorously fix the renormalized couplings of the hadron states. The helicity amplitudes, or Lorentz structures, are used to express the gauge-invariant transition amplitudes of the processes under consideration. The fractional strong decay width of $Y\to J/\psi+f_0(980)$ is calculated, as is the branching ratio of strong decays (via the $f_0(980)$ resonance) with hidden charms, $\mathcal B(Y\to K^{+}K^{-}J/\psi)/\mathcal B(Y\to\pi^{+}\pi^{-}J/\psi)$, as measured by the BESIII Collaboration in 2022. Only one common adjustable parameter for the charmonium states $\eta_c({}^1S_0)$, $J/\psi({}^3S_1)$, $\chi_{c0}({}^3P_0)$, $\chi_{c1}({}^3P_1)$, $h_c({}^1P_1)$, and $\chi_{c2}({}^3P_{2})$ is introduced to describe the quark distribution inside the hadron. We calculate the fractional widths of one-photon radiative decays for the states $J/\psi({}^3S_1)$, $\chi_{cJ}({}^3P_{J})$, $J=\{0,1,2\}$, and $h_c({}^1P_1)$. Our estimates of the decay widths of the processes under consideration are in reasonable agreement with the latest experimental data.
Keywords: relativistic quark model, exotic states, charmonium, tetraquarks, decay widths.
Mots-clés : confinement
@article{TMF_2023_216_3_a8,
     author = {G. Gandbold},
     title = {Strong decays of the~charmonium-like state $Y(4230)$ and radiative transitions of low-lying charmoniums},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {490--503},
     year = {2023},
     volume = {216},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a8/}
}
TY  - JOUR
AU  - G. Gandbold
TI  - Strong decays of the charmonium-like state $Y(4230)$ and radiative transitions of low-lying charmoniums
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 490
EP  - 503
VL  - 216
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a8/
LA  - ru
ID  - TMF_2023_216_3_a8
ER  - 
%0 Journal Article
%A G. Gandbold
%T Strong decays of the charmonium-like state $Y(4230)$ and radiative transitions of low-lying charmoniums
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 490-503
%V 216
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a8/
%G ru
%F TMF_2023_216_3_a8
G. Gandbold. Strong decays of the charmonium-like state $Y(4230)$ and radiative transitions of low-lying charmoniums. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 3, pp. 490-503. http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a8/

[1] B. Aubert, R. Barate, D. Boutigny et al. [BaBar Collab.], “Observation of a broad structure in the $\pi^{+}\pi^{-}J/\psi$ mass spectrum around 4.26 GeV/c$^2$”, Phys. Rev. Lett., 95:14 (2005), 142001, 7 pp., arXiv: hep-ex/0506081 | DOI

[2] N. Brambilla, S. Eidelman, B. K. Heltsley et al., “Heavy quarkonium: Progress, puzzles, and opportunities”, Eur. Phys. J. C, 71:2 (2011), 1534, 178 pp., arXiv: 1010.5827 | DOI

[3] S.-L. Zhu, “The possible interpretations of $Y(4260)$”, Phys. Lett. B, 625:3–4 (2005), 212–216, arXiv: hep-ph/0507025 | DOI

[4] E. Kou, O. Pene, “Suppressed decay into open charm for the $Y(4260)$ being an hybrid”, Phys. Lett. B, 631:4 (2005), 164–169, arXiv: hep-ph/0507119 | DOI

[5] F. E. Close, P. R. Page, “Gluonic charmonium resonances at BaBar and Belle?”, Phys. Lett. B, 628:3–4 (2005), 215–222, arXiv: hep-ph/0507199 | DOI

[6] L. Maiani, F. Piccinini, A. D. Polosa, V. Riquer, “Four quark interpretation of $Y(4260)$”, Phys. Rev. D, 72:3 (2005), 031502, 3 pp., arXiv: hep-ph/0507062 | DOI

[7] X. Liu, X.-Q. Zeng, X.-Q. Li, “Possible molecular structure of the newly observed $Y(4260)$”, Phys. Rev. D, 72:5 (2005), 054023, 4 pp., arXiv: hep-ph/0507177 | DOI

[8] Q. Wang, C. Hanhart, Q. Zhao, “Decoding the riddle of $Y(4260)$ and $Z_c(3900)$”, Phys. Rev. Lett., 111:13 (2013), 132003, 5 pp., arXiv: 1303.6355 | DOI

[9] G. Li, X.-H. Liu, “Investigating possible decay modes of $Y(4260)$ under $D_1(2420)\bar{D}+\text{c.c.}$ molecular state ansatz”, Phys. Rev. D, 88:9 (2013), 094008, 8 pp., arXiv: 1307.2622 | DOI

[10] Y. Dong, A. Faessler, T. Gutsche, V. E. Lyubovitskij, “Selected strong decay modes of Y(4260)”, Phys. Rev. D, 89:3 (2014), 034018, 7 pp., arXiv: 1310.4373 | DOI

[11] M. Ablikim, M. N. Achasov, P. Adlarson et al. [BESIII Collab.], “Observation of the $Y(4230)$ and a new structure in $e^{+}e^{-}\to K^{+}K^{-}J/\psi$”, Chinese Phys. C, 46:11 (2022), 111002, 16 pp., arXiv: 2204.07800 | DOI

[12] R. L. Workman, V. D. Burkert, V. Crede et al. [Particle Data Group], “The review of particle physics”, Prog. Theor. Exp. Phys., 2022:8 (2022), 083C01, 2269 pp. | DOI

[13] M. Ablikim, M. N. Achasov, S. Ahmed et al. [BESIII Collab.], “Observation of OZI-suppressed decays $\chi_{cJ}\to\omega\phi$”, Phys. Rev. D, 99:1 (2019), 012015, 9 pp. ; R. Aaij, B. Adeva, M. Adinolfi et al. [LHCb Collab.], “Model-independent confirmation of the $Z(4430)^{-}$ state”, Phys. Rev. D, 92:11 (2015), 112009, 15 pp. | DOI | DOI

[14] P. Guo, T. Yépez-Marínez, A. P. Szczepaniak, “Charmonium meson and hybrid radiative transitions”, Phys. Rev. D, 89:11 (2014), 116005, 12 pp. | DOI

[15] T. Barnes, S. Godfrey, E. S. Swanson, “Higher charmonia”, Phys. Rev. D, 72:5 (2005), 054026, 20 pp. | DOI

[16] S. Dubnička, A. Z. Dubničková, A. Issadykov, M. A. Ivanov, A. Liptaj, “$Y(4260)$ as four-quark state”, Phys. Rev. D, 101:9 (2020), 094030, 7 pp., arXiv: 2003.04142 | DOI

[17] G. Ganbold, “Glueballs and mesons: The ground states”, Phys. Rev. D, 79:3 (2009), 034034, 10 pp. | DOI

[18] G. Ganbold, “QCD effective coupling in the infrared region”, Phys. Rev. D, 81:9 (2010), 094008, 9 pp. | DOI

[19] G. V. Efimov, G. Ganbold, “Meson spectrum and analytic confinement”, Phys. Rev. D, 65:5 (2002), 054012, 9 pp. ; G. Ganbold, “Hadron spectrum and infrared-finite behavior of QCD running coupling”, Phys. Part. Nucl., 43:1 (2012), 79–128 | DOI | DOI

[20] T. Branz, A. Faessler, T. Gutsche, M. A. Ivanov, J. G. Körner, E. Lyubovitskij, “Relativistic constituent quark model with infrared confinement”, Phys. Rev. D, 81:3 (2010), 034010, 14 pp. | DOI

[21] G. Ganbold, T. Gutsche, M. A. Ivanov, V. E. Lyubovitskij, “Radiative transitions of charmonium states in the covariant confined quark model”, Phys. Rev. D, 104:9 (2021), 094048, 15 pp. | DOI

[22] T. Branz, A. Faessler, T. Gutsche, M. A. Ivanov, J. G. Körner, V. E. Lyubovitskij, “Relativistic constituent quark model with infrared confinement”, Phys. Rev. D, 81:3 (2010), 034010, 14 pp., arXiv: 0912.3710 | DOI

[23] A. Salam, “Lagrangian theory of composite particles”, Nuovo Cim., 25 (1962), 224–227 | DOI

[24] S. Weinberg, “Elementary particle theory of composite particles”, Phys. Rev., 130:2 (1963), 776–783 | DOI | MR

[25] C. F. Uhlemann, N. Kauer, “Narrow-width approximation accuracy”, Nucl. Phys. B, 814:1–2 (2009), 195–211 | DOI

[26] R. Aaij, C. Abellan Beteta, B. Adeva et al. [LHCb Collab.], “Measurement of the cross-section ratio $\sigma(\chi_{c2})/\sigma(\chi_{c1})$ for prompt $\chi_c$ production at $\sqrt{s}=7$ TeV”, Phys. Lett. B, 714:2–5 (2015), 215–223, arXiv: ; R. Aaij, B. Adeva, M. Adinolfi et al. [LHCb Collab.], “Measurement of the relative rate of prompt $\chi_{c0}$, $\chi_{c1}$ and $\chi_{c2}$ production at $\sqrt{s}=7$ TeV”, JHEP, 2013:10 (2013), 115, 20 pp. 1202.1080 | DOI | DOI

[27] D. Bečirević, F. Sanfilippo, “Lattice QCD study of the radiative decays $J/\psi\to\eta_c\gamma$ and $h_c\to\eta_c\gamma$”, JHEP, 2013:01 (2013), 028, 23 pp. | DOI

[28] R. Bruschini, P. González, “Radiative decays in bottomonium beyond the $p/m$ approximation”, Phys. Rev. D, 101:1 (2020), 014027, 16 pp. | DOI

[29] E. Eichten, S. Godfrey, H. Mahlke, J. L. Rosner, “Quarkonia and their transitions”, Rev. Mod. Phys., 80:3 (2008), 1161–1193 | DOI

[30] M. B. Voloshin, “Charmonium”, Prog. Part. Nucl. Phys., 61:2 (2008), 455–511 | DOI

[31] W.-J. Deng, H. Liu, L.-C. Gui, X.-H. Zhong, “Charmonium spectrum and electromagnetic transitions with higher multipole contributions”, Phys. Rev. D, 95:3 (2017), 034026, 21 pp. | DOI