Affine super-Yangian and a quantum Weyl groupoid
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 3, pp. 476-489 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We define two realizations of the affine super-Yangian $Y_{\hbar}(\widehat{sl}(m|n))$ for a special linear Kac–Moody superalgebra $\widehat{sl}(m|n)$ and an arbitrary system of simple roots: in terms of a “minimalist” system of generators and in terms of the new system of Drinfeld generators. We construct an isomorphism between these two realizations of the super-Yangian in the case of a fixed system of simple roots. We consider the Weyl groupoid, define its quantum analogue, and its action on the super Yangians defined by the systems of simple roots. We show that the action of the quantum Weyl groupoid induces isomorphisms between super-Yangians defined by different simple root systems.
Keywords: Yangian for an affine Kac–Moody superalgebra, quantum Weyl group, Kac–Moody Lie superalgebra.
Mots-clés : Weyl groupoid
@article{TMF_2023_216_3_a7,
     author = {V. D. Volkov and V. A. Stukopin},
     title = {Affine {super-Yangian} and a~quantum {Weyl} groupoid},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {476--489},
     year = {2023},
     volume = {216},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a7/}
}
TY  - JOUR
AU  - V. D. Volkov
AU  - V. A. Stukopin
TI  - Affine super-Yangian and a quantum Weyl groupoid
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 476
EP  - 489
VL  - 216
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a7/
LA  - ru
ID  - TMF_2023_216_3_a7
ER  - 
%0 Journal Article
%A V. D. Volkov
%A V. A. Stukopin
%T Affine super-Yangian and a quantum Weyl groupoid
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 476-489
%V 216
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a7/
%G ru
%F TMF_2023_216_3_a7
V. D. Volkov; V. A. Stukopin. Affine super-Yangian and a quantum Weyl groupoid. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 3, pp. 476-489. http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a7/

[1] V. G. Drinfeld, “Novaya realizatsiya yangianov i kvantovannykh affinnykh algebr”, Dokl. AN SSSR, 296:1 (1987), 13–17 | MR | Zbl

[2] V. A. Stukopin, “O yangianakh superalgebr Li tipa $A(m,n)$”, Funkts. analiz i ego pril., 28:3 (1994), 85–88 | DOI | MR | Zbl

[3] V. Chari, A. Pressley, A Quide to Quantum Groups, Cambridge Univ. Press, Cambridge, 1995 | MR

[4] N. Guay, H. Nakajima, C. Wendlandt, “Coproduct for Yangians of affine Kac–Moody algebras”, Adv. Math., 338 (2018), 865–911 | DOI | MR

[5] S. Z. Levendorskii, “On generators and defining relations of Yangians”, J. Geom. Phys., 12:1 (1993), 1–11 | DOI | MR

[6] I. M. Musson, Lie Superalgebras and Enveloping Algebras, Graduate Studies in Mathematics, AMS, Providence, RI, 2012 | DOI | MR

[7] A. Mazurenko, V. A. Stukopin, Classification of Hopf superalgebras associated with quantum special linear superalgebra at roots of unity using Weyl groupoid, arXiv: 2111.06576

[8] A. Mazurenko, V. A. Stukopin, Classification of Hopf superalgebra structures on Drinfeld super Yangians, arXiv: 2210.08365

[9] V. G. Drinfeld, “Kvantovye gruppy”, Differentsialnaya geometriya, gruppy Li i mekhanika. VIII, Zap. nauchn. sem. LOMI, 155, Izd-vo “Nauka”, Leningrad. otd., L., 1986, 18–49 | DOI | Zbl

[10] A. I. Molev, Yangiany i klassicheskie algebry Li, MTsNMO, M., 2009 | MR

[11] V. A. Stukopin, “O duble yangiana superalgebry Li tipa $A(m,n)$”, Funkts. analiz i ego pril., 40:2 (2006), 81–84 | DOI | DOI | MR | Zbl

[12] S. I. Boyarchenko, S. Z. Levendorskii, “On affine Yangians”, Lett. Math. Phys., 32:4 (1993), 2691–274 | MR

[13] N. Guay, “Affine Yangians and deformed double current algebras in type $A$”, Adv. Math., 211:2 (2007), 436–484 | DOI | MR

[14] M. R. Gaberdiel, W. Li, C. Peng, H. Zhang, The supersymmetric affine Yangian, JHEP, 2018, 32 pp., arXiv: 1711.07449 | DOI

[15] M. Ueda, Construction of affine super Yangian, arXiv: 1911.06666

[16] V. A. Stukopin, “Kvantovyi dubl yangiana superalgebry Li tipa $A(m,n)$ i vychislenie universalnoi $R$-matritsy”, Fundament. i prikl. matem., 11:2 (2005), 185–208 | DOI | MR | Zbl

[17] V. A. Stukopin, “O predstavleniyakh yangiana superalgebry Li tipa $A(m,n)$”, Izv. RAN. Ser. matem., 77:5 (2013), 179–202 | DOI | DOI | MR | Zbl

[18] M. Bershtein, A. Tsymbaliuk, “Homomorphism between different quantum toroidal and affine Yangian algebras”, J. Pure Appl. Algebra, 223:2 (2019), 867–899, arXiv: 1512.09109 | DOI | MR

[19] V. A. Stukopin, “Ob izomorfizme yangiana $Y_\hbar(A(m,n))$ spetsialnoi lineinoi superalgebry Li i kvantovoi petelevoi superalgebry $U_q(LA(m,n))$”, TMF, 198:1 (2019), 145–161 | DOI | DOI | MR

[20] V. A. Stukopin, “O svyazi kategorii predstavlenii yangiana spetsialnoi lineinoi superalgebry Li i kvantovoi petlevoi superalgebry”, TMF, 204:3 (2020), 466–484 | DOI | DOI | MR

[21] R. Kodera, “Braid group action on affine Yangian”, SIGMA, 15 (2019), 020, 28 pp. | DOI | MR