Conformal invariance and phenomenology of particle creation:
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 3, pp. 445-459
Voir la notice de l'article provenant de la source Math-Net.Ru
Using the example of an action for an ideal fluid with a variable
number of particles, we study a phenomenological description of the
processes of particle production in the background of strong
external fields, including gravity and scalar fields. This model is
discussed for Weyl geometry and Riemannian geometry. A new invariant
related to the interaction of the Weyl vector with particles is
incorporated into the considered matter action. The conformal
invariance of the term in the matter action responsible for the
particle production is demonstrated.
Keywords:
Weyl geometry, Riemannian geometry, quadratic gravity, cosmology.
@article{TMF_2023_216_3_a5,
author = {V. A. Berezin and I. D. Ivanova},
title = {Conformal invariance and phenomenology of particle creation:},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {445--459},
publisher = {mathdoc},
volume = {216},
number = {3},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a5/}
}
TY - JOUR AU - V. A. Berezin AU - I. D. Ivanova TI - Conformal invariance and phenomenology of particle creation: JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 445 EP - 459 VL - 216 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a5/ LA - ru ID - TMF_2023_216_3_a5 ER -
V. A. Berezin; I. D. Ivanova. Conformal invariance and phenomenology of particle creation:. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 3, pp. 445-459. http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a5/