Conformal invariance and phenomenology of particle creation:
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 3, pp. 445-459 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the example of an action for an ideal fluid with a variable number of particles, we study a phenomenological description of the processes of particle production in the background of strong external fields, including gravity and scalar fields. This model is discussed for Weyl geometry and Riemannian geometry. A new invariant related to the interaction of the Weyl vector with particles is incorporated into the considered matter action. The conformal invariance of the term in the matter action responsible for the particle production is demonstrated.
Keywords: Weyl geometry, Riemannian geometry, quadratic gravity, cosmology.
@article{TMF_2023_216_3_a5,
     author = {V. A. Berezin and I. D. Ivanova},
     title = {Conformal invariance and phenomenology of particle creation:},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {445--459},
     year = {2023},
     volume = {216},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a5/}
}
TY  - JOUR
AU  - V. A. Berezin
AU  - I. D. Ivanova
TI  - Conformal invariance and phenomenology of particle creation:
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 445
EP  - 459
VL  - 216
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a5/
LA  - ru
ID  - TMF_2023_216_3_a5
ER  - 
%0 Journal Article
%A V. A. Berezin
%A I. D. Ivanova
%T Conformal invariance and phenomenology of particle creation:
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 445-459
%V 216
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a5/
%G ru
%F TMF_2023_216_3_a5
V. A. Berezin; I. D. Ivanova. Conformal invariance and phenomenology of particle creation:. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 3, pp. 445-459. http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a5/

[1] A. V. Vilenkin, “Creation of universes from nothing”, Phys. Lett. B, 117:1–2 (1982), 25–28 | DOI

[2] R. Penrose, “On the gravitization of quantum mechanics 1: Quantum state reduction”, Found. Phys., 44:5 (2014), 557–575 | DOI | MR

[3] G. 't Hooft, “Singularities, horizons, firewalls, and local conformal symmetry”, 2nd Karl Schwarzschild Meeting on Gravitational Physics, Springer Proceedings in Physics, 208, eds. P. Nicolini, M. Kaminski, J. Mureika, M. Bleicher, Springer, Cham, 2018, 1–12 | DOI

[4] V. Berezin, V. Dokuchaev, Yu. Eroshenko, “Spherically symmetric double layers in Weyl+Einstein gravity”, Internat. J. Modern Phys. D, 28:13 (2019), 1941007, 17 pp. | DOI | MR

[5] V. Berezin, V. Dokuchaev, Yu. Eroshenko, A. Smirnov, “Least action principle and gravitational double layer”, Internat. J. Modern Phys. A, 35:2–3 (2020), 2040002, 9 pp. | DOI | MR

[6] H. Weyl, “Reine Infinitesimalgeometrie”, Math. Z., 2:3–4 (1918), 384–411 | DOI | MR

[7] L. Parker, “Quantized fields and particle creation in expanding universes”, Phys. Rev., 183:5 (1969), 1057–1068 | DOI

[8] A. A. Grib, S. G. Mamaev, “O teorii polya v prostranstve Fridmana”, YaF, 10 (1969), 1276–1281 | MR

[9] Ya. B. Zel'doviĉ, L. P. Pitaevskiî, “On the possibility of the creation of particles by a classical gravitational field”, Commun. Math. Phys., 23:3 (1971), 185–188 | DOI | MR

[10] B. L. Hu, S. A. Fulling, L. Parker, “Quantized scalar fields in a closed anisotropic universe”, Phys. Rev. D, 8:8 (1973), 2377–2385 | DOI

[11] S. A. Fulling, L. Parker, B. L. Hu, “Conformal energy-momentum tensor in curved spacetime: adiabatic regularization and renormalization”, Phys. Rev. D, 10 (1974), 3905–3924 ; Erratum, 11 (1975), 1714–1714 | DOI | MR | DOI

[12] S. A. Fulling, L. Parker, “Renormalization in the theory of a quantized scalar field interacting with a robertson-walker spacetime”, Ann. Phys. D, 87:1 (1974), 176–204 | DOI

[13] J. R. Ray, “Lagrangian density for perfect fluids in general relativity”, J. Math. Phys., 13:10 (1972), 1451–1453 | DOI

[14] V. A. Berezin, “Unusual hydrodynamics”, Internat. J. Modern Phys. A, 2 (1987), 1591–1615 | DOI

[15] J. B. Jiménez, L. Heisenberg, T. S. Koivisto, “The geometrical trinity of gravity”, Universe, 5:7 (2019), 173, 17 pp. | DOI

[16] A. T. Filippov, “Affinnaya gravitatsiya Veilya–Eddingtona–Einshteina v kontekste sovremennoi kosmologii”, TMF, 163:3 (2010), 430–448 | DOI | DOI | MR

[17] Ya. B. Zeldovich, A. A. Starobinskii, “Rozhdenie chastits i polyarizatsiya vakuuma v anizotropnom gravitatsionnom pole”, ZhETF, 61:6(12) (1971), 2161–2175

[18] L. Parker, S. A. Fulling, “Quantized matter fields and the avoidance of singularities in general relativity”, Phys. Rev. D, 7:8 (1973), 2357–2374 | DOI

[19] A. A. Grib, S. G. Mamaev, V. M. Mostepanenko, “Particle creation from vacuum in homogeneous isotropic models of the Universe”, Gen. Rel. Grav., 7:6 (1976), 535–547 | DOI | MR

[20] A. D. Sakharov, “Vakuumnye kvantovye fluktuatsii v iskrivlennom prostranstve i teoriya gravitatsii”, Dokl. AN SSSR, 177:1 (1967), 70–71

[21] Ya. B. Zeldovich, A. A. Starobinskii, “O skorosti rozhdeniya chastits v gravitatsionnykh polyakh”, Pisma v ZhETF, 26:5 (1977), 373–377