@article{TMF_2023_216_3_a5,
author = {V. A. Berezin and I. D. Ivanova},
title = {Conformal invariance and phenomenology of particle creation:},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {445--459},
year = {2023},
volume = {216},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a5/}
}
V. A. Berezin; I. D. Ivanova. Conformal invariance and phenomenology of particle creation:. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 3, pp. 445-459. http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a5/
[1] A. V. Vilenkin, “Creation of universes from nothing”, Phys. Lett. B, 117:1–2 (1982), 25–28 | DOI
[2] R. Penrose, “On the gravitization of quantum mechanics 1: Quantum state reduction”, Found. Phys., 44:5 (2014), 557–575 | DOI | MR
[3] G. 't Hooft, “Singularities, horizons, firewalls, and local conformal symmetry”, 2nd Karl Schwarzschild Meeting on Gravitational Physics, Springer Proceedings in Physics, 208, eds. P. Nicolini, M. Kaminski, J. Mureika, M. Bleicher, Springer, Cham, 2018, 1–12 | DOI
[4] V. Berezin, V. Dokuchaev, Yu. Eroshenko, “Spherically symmetric double layers in Weyl+Einstein gravity”, Internat. J. Modern Phys. D, 28:13 (2019), 1941007, 17 pp. | DOI | MR
[5] V. Berezin, V. Dokuchaev, Yu. Eroshenko, A. Smirnov, “Least action principle and gravitational double layer”, Internat. J. Modern Phys. A, 35:2–3 (2020), 2040002, 9 pp. | DOI | MR
[6] H. Weyl, “Reine Infinitesimalgeometrie”, Math. Z., 2:3–4 (1918), 384–411 | DOI | MR
[7] L. Parker, “Quantized fields and particle creation in expanding universes”, Phys. Rev., 183:5 (1969), 1057–1068 | DOI
[8] A. A. Grib, S. G. Mamaev, “O teorii polya v prostranstve Fridmana”, YaF, 10 (1969), 1276–1281 | MR
[9] Ya. B. Zel'doviĉ, L. P. Pitaevskiî, “On the possibility of the creation of particles by a classical gravitational field”, Commun. Math. Phys., 23:3 (1971), 185–188 | DOI | MR
[10] B. L. Hu, S. A. Fulling, L. Parker, “Quantized scalar fields in a closed anisotropic universe”, Phys. Rev. D, 8:8 (1973), 2377–2385 | DOI
[11] S. A. Fulling, L. Parker, B. L. Hu, “Conformal energy-momentum tensor in curved spacetime: adiabatic regularization and renormalization”, Phys. Rev. D, 10 (1974), 3905–3924 ; Erratum, 11 (1975), 1714–1714 | DOI | MR | DOI
[12] S. A. Fulling, L. Parker, “Renormalization in the theory of a quantized scalar field interacting with a robertson-walker spacetime”, Ann. Phys. D, 87:1 (1974), 176–204 | DOI
[13] J. R. Ray, “Lagrangian density for perfect fluids in general relativity”, J. Math. Phys., 13:10 (1972), 1451–1453 | DOI
[14] V. A. Berezin, “Unusual hydrodynamics”, Internat. J. Modern Phys. A, 2 (1987), 1591–1615 | DOI
[15] J. B. Jiménez, L. Heisenberg, T. S. Koivisto, “The geometrical trinity of gravity”, Universe, 5:7 (2019), 173, 17 pp. | DOI
[16] A. T. Filippov, “Affinnaya gravitatsiya Veilya–Eddingtona–Einshteina v kontekste sovremennoi kosmologii”, TMF, 163:3 (2010), 430–448 | DOI | DOI | MR
[17] Ya. B. Zeldovich, A. A. Starobinskii, “Rozhdenie chastits i polyarizatsiya vakuuma v anizotropnom gravitatsionnom pole”, ZhETF, 61:6(12) (1971), 2161–2175
[18] L. Parker, S. A. Fulling, “Quantized matter fields and the avoidance of singularities in general relativity”, Phys. Rev. D, 7:8 (1973), 2357–2374 | DOI
[19] A. A. Grib, S. G. Mamaev, V. M. Mostepanenko, “Particle creation from vacuum in homogeneous isotropic models of the Universe”, Gen. Rel. Grav., 7:6 (1976), 535–547 | DOI | MR
[20] A. D. Sakharov, “Vakuumnye kvantovye fluktuatsii v iskrivlennom prostranstve i teoriya gravitatsii”, Dokl. AN SSSR, 177:1 (1967), 70–71
[21] Ya. B. Zeldovich, A. A. Starobinskii, “O skorosti rozhdeniya chastits v gravitatsionnykh polyakh”, Pisma v ZhETF, 26:5 (1977), 373–377