Ultraviolet regularization of energy of two static sources in
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 3, pp. 433-444 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is well known that the potential energy of two heavy quarks carries an important information about the physics of confinement. Using the Wilson loop confinement criterion and the Nambu–Goto string action, this energy can be derived within the bottom-up holographic approach to strong interactions. We recapitulate the standard holographic derivation of the potential between two static sources with emphasis on the physical interpretation of the results. We address the problem of regularization of the arising ultraviolet divergence in the general case, with “ultraviolet” referring to small values of the holographic coordinate associated with the inverse energy scale in holographic duality. We show that in the case of the widely used soft-wall holographic models many ultraviolet divergences can appear in principle, although the appearance of more than two different divergences looks somewhat exotic in practice. Some possible subtraction schemes are discussed. Different schemes lead to a different constant shift of the potential energy, which entails a certain scheme dependence of holographic predictions for the constant term in the resulting Cornell-like confinement potentials.
Keywords: holographic quantum chromodynamics.
@article{TMF_2023_216_3_a4,
     author = {S. S. Afonin},
     title = {Ultraviolet regularization of energy of two static sources in},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {433--444},
     year = {2023},
     volume = {216},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a4/}
}
TY  - JOUR
AU  - S. S. Afonin
TI  - Ultraviolet regularization of energy of two static sources in
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 433
EP  - 444
VL  - 216
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a4/
LA  - ru
ID  - TMF_2023_216_3_a4
ER  - 
%0 Journal Article
%A S. S. Afonin
%T Ultraviolet regularization of energy of two static sources in
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 433-444
%V 216
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a4/
%G ru
%F TMF_2023_216_3_a4
S. S. Afonin. Ultraviolet regularization of energy of two static sources in. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 3, pp. 433-444. http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a4/

[1] J. M. Maldacena, “The large $N$ limit of superconformal field theories and supergravity ”, Adv. Theor. Math. Phys., 2:2 (1998), 231–252 ; Internat. J. Theor. Phys., 38:4 (1999), 1113–1133, arXiv: hep-th/9711200 | DOI | MR | DOI | MR

[2] E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories”, Adv. Theor. Math. Phys., 2:3 (1998), 505–532, arXiv: hep-th/9803131 | DOI | MR

[3] S. S. Gubser, I. R. Klebanov, A. M. Polyakov, “Gauge theory correlators from non-critical string theory”, Phys. Lett. B, 428:1–2 (1998), 105–114, arXiv: hep-th/9802109 | DOI | MR

[4] A. Karch, E. Katz, D. T. Son, M. A. Stephanov, “Linear confinement and AdS/QCD”, Phys. Rev. D, 74:1 (2006), 015005, 7 pp., arXiv: hep-ph/0602229 | DOI

[5] O. Andreev, “$1/q^2$ corrections and gauge/string duality”, Phys. Rev. D, 73:10 (2006), 107901, 4 pp., arXiv: 0603170 | MR

[6] S. S. Afonin, T. D. Solomko, “Towards a theory of bottom-up holographic models for linear Regge trajectories of light mesons”, Eur. Phys. J. C, 82:3 (2022), 195, 36 pp., arXiv: 2106.01846 | DOI

[7] I. R. Klebanov, J. M. Maldacena, “Solving quantum field theories via curved spacetimes”, Phys. Today, 62:1 (2009), 28–33 | DOI

[8] I. Iatrakis, E. Kiritsis, A. Paredes, “An AdS/QCD model from tachyon condensation: II”, JHEP, 11 (2010), 123, 54 pp., arXiv: 1010.1364 | DOI | MR | Zbl

[9] S. S. Afonin, “Holographic-like models as a five-dimensional rewriting of large-$N_\mathrm{c}$ QCD”, Internat. J. Modern Phys. A, 25:31 (2010), 5683–5710, arXiv: 1001.3105 | DOI

[10] O. Andreev, V. I. Zakharov, “Heavy-quark potentials and AdS/QCD”, Phys. Rev. D, 74:2 (2006), 025023, 6 pp., arXiv: hep-ph/0604204 | DOI

[11] G. S. Bali, “QCD forces and heavy quark bound states”, Phys. Rep., 343:1–2 (2001), 1–136, arXiv: hep-ph/0001312 | DOI

[12] H. Boschi-Filho, N. R. F. Braga, C. N. Ferreira, “Static strings in Randall–Sundrum scenarios and the quark anti-quark potential”, Phys. Rev. D, 73:10 (2006), 106006, 5 pp. ; Erratum, 74:8 (2006), 089903, 1 pp., arXiv: ; C. D. White, “The Cornell potential from general geometries in AdS/QCD”, Phys. Lett. B, 652:2003 (2007), 79–85, arXiv: ; D.-F. Zeng, “Heavy quark potentials in some renormalization group revised AdS/QCD models”, Phys. Rev. D, 78:12 (2008), 126006, 9 pp., arXiv: ; H. J. Pirner, B. Galow, “Strong equivalence of the AdS-metric and the QCD running coupling”, Phys. Lett. B, 679:1 (2009), 51–55, arXiv: ; F. Jugeau, “Hadrons potentials within the gauge/string correspondence”, Ann. Phys., 325:8 (2010), 1739–1789, arXiv: ; S. He, M. Huang, Q.-S. Yan, “Logarithmic correction in the deformed AdS$_5$ model to produce the heavy quark potential and QCD beta function”, Phys. Rev. D, 83:4 (2011), 045034, 14 pp., arXiv: ; R. C. L. Bruni, E. Folco Capossoli, H. Boschi-Filho, “Quark-antiquark potential from a deformed AdS/QCD”, Adv. High Energy Phys., 2019 (2019), 1901659, 6 pp., arXiv: ; K. Hashimoto, K. Ohashi, T. Sumimoto, “Deriving the dilaton potential in improved holographic QCD from the meson spectrum”, Phys. Rev. D, 105:10 (2022), 106008, 7 pp., arXiv: hep-th/0512295hep-ph/07011570805.27330903.27010812.49031004.18801806.057202108.08091 | DOI | DOI | DOI | DOI | DOI | DOI | MR | DOI | DOI | DOI

[13] J. M. Maldacena, “Wilson loops in large $N$ field theories”, Phys. Rev. Lett., 80:22 (1998), 4859–4862, arXiv: hep-th/9803002 | DOI | MR

[14] N. Drukker, D. J. Gross, H. Ooguri, “Wilson loops and minimal surfaces”, Phys. Rev. D, 60:12 (1999), 125006, 20 pp., arXiv: hep-th/9904191 | DOI | MR

[15] A. Brandhuber, N. Itzhaki, J. Sonnenschein, S. Yankielowicz, “Wilson loops in the large $N$ limit at finite temperature”, Phys. Lett. B, 434 (1998), 36–40, arXiv: hep-th/9803137 | DOI

[16] Y. Kinar, E. Schreiber, J. Sonnenschein, “$Q\bar Q$ potential from strings in curved space-time – classical results”, Nucl. Phys. B, 566:1–2 (2000), 103–125, arXiv: hep-th/9811192 | DOI | MR

[17] S. S. Afonin, T. D. Solomko, “Gluon string breaking and meson spectrum in the holographic Soft Wall model”, Phys. Lett. B, 831 (2022), 137185, 9 pp., arXiv: 2112.00021 | DOI | MR | Zbl

[18] S. S. Afonin, T. D. Solomko, “Cornell potential in generalized soft wall holographic model”, J. Phys. G, 49:10 (2022), 105003, arXiv: 2208.02604 | DOI

[19] I. Ya. Aref'eva, “Holography for heavy ions collisions at LHC and NICA”, EPJ Web Conf., 164 (2017), 01014, 20 pp., arXiv: 1612.08928 | DOI

[20] S. J. Brodsky, G. F. de Téramond, H. G. Dosch, J. Erlich, “Light-front holographic QCD and emerging confinement”, Phys. Rept., 584 (2015), 1–105, arXiv: 1407.8131 | DOI | MR

[21] S. S. Afonin, T. D. Solomko, “Confinement potential in a soft-wall holographic model with a hydrogen-like spectrum”, Universe, 9:3 (2023), 114, 14 pp., arXiv: 2303.02356 | DOI

[22] S. S. Afonin, T. D. Solomko, Confinement potential in Soft Wall holographic approach to QCD, arXiv: 2209.07109