Influence of quark–gluon string interactions on particle correlations in p+p collisions
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 3, pp. 417-432 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the initial states of p{+}p interactions and their influence on the correlation and fluctuation observables that are sensitive to them by considering the processes of multipomeron exchange and stretching of color QCD strings. We discuss the full string dynamics, their longitudinal motion due to the deceleration of the string ends, and the transverse motion caused by attraction due to the exchange of sigma mesons with subsequent fusion. We calculate the coefficient of rapidity correlations and the strongly intensive variables constructed for the multiplicity of charged particles, $N$, and the total transverse momentum $P_\mathrm{T}$ for inelastic p{+}p interactions at the energy of $200$ GeV.
Keywords: strong interaction, multipomeron exchange, collectivity, multiplicity
Mots-clés : fluctuations, transverse momentum.
@article{TMF_2023_216_3_a3,
     author = {E. V. Andronov and D. S. Prokhorova and A. A. Belousov},
     title = {Influence of quark{\textendash}gluon string interactions on particle correlations in p+p collisions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {417--432},
     year = {2023},
     volume = {216},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a3/}
}
TY  - JOUR
AU  - E. V. Andronov
AU  - D. S. Prokhorova
AU  - A. A. Belousov
TI  - Influence of quark–gluon string interactions on particle correlations in p+p collisions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 417
EP  - 432
VL  - 216
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a3/
LA  - ru
ID  - TMF_2023_216_3_a3
ER  - 
%0 Journal Article
%A E. V. Andronov
%A D. S. Prokhorova
%A A. A. Belousov
%T Influence of quark–gluon string interactions on particle correlations in p+p collisions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 417-432
%V 216
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a3/
%G ru
%F TMF_2023_216_3_a3
E. V. Andronov; D. S. Prokhorova; A. A. Belousov. Influence of quark–gluon string interactions on particle correlations in p+p collisions. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 3, pp. 417-432. http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a3/

[1] E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K. D. Lane, T.-M. Yan, “Spectrum of charmed quark-antiquark bound states”, Phys. Rev. Lett., 34:6 (1975), 369–372 ; Erratum, 36:21, 1276–1276 | DOI | DOI

[2] F. J. Wegner, “Duality in generalized Ising models and phase transitions without local order parameters”, J. Math. Phys., 12:10 (1971), 2259–2272 | DOI | MR

[3] K. G. Wilson, “Confinement of quarks”, Phys. Rev. D, 10:8 (1974), 2445–2459 | DOI

[4] M. Creutz, “Asymptotic-freedom scales”, Phys. Rev. Lett., 45:5 (1980), 313–316 | DOI

[5] G. 't Hooft, “A planar diagram theory for strong interactions”, Nucl. Phys. B, 72:3 (1974), 461–473 | DOI

[6] G. Veneziano, “Regge intercepts and unitarity in planar dual models”, Nucl. Phys. B, 74:3 (1974), 365–377 | DOI

[7] G. Veneziano, “Large $N$ expansion in dual models”, Phys. Lett. B, 52:2 (1974), 220–222 | DOI

[8] G. Veneziano, “Some aspects of a unified approach to gauge, dual and Gribov theories”, Nucl. Phys. B, 117:2 (1976), 519 | DOI

[9] J. Schwinger, “On gauge invariance and vacuum polarization”, Phys. Rev., 82:5 (1951), 664–679 | DOI | MR

[10] X. Artru, “Classical string phenomenology. How strings work”, Phys. Rep., 97:2–3 (1983), 147–171 | DOI

[11] A. Capella, U. Sukhatme, C.-I. Tan, J. Tran Thanh Van, “Jets in small-$p_\mathrm{T}$ hadronic collisions, universality of quark fragmentation, and rising rapidity plateaus”, Phys. Lett. B, 81:1 (1979), 68–74 | DOI

[12] A. B. Kaidalov, “The quark-gluon structure of the pomeron and the rise of inclusive spectra at high energies”, Phys. Lett. B, 116:6 (1982), 459–463 | DOI

[13] V. N. Gribov, “Redzhionnaya diagrammnaya tekhnika”, ZhETF, 53:2 (1968), 654–672

[14] K. Werner, “Strings, pomerons and the VENUS model of hadronic interactions at ultrarelativistic energies”, Phys. Rep., 232:2–5 (1993), 87–299 | DOI

[15] M. Zach, M. Faber, P. Skala, “Flux tubes and their interaction in $U(1)$ lattice gauge theory”, Nucl. Phys. B, 529:1–2 (1998), 505 | DOI

[16] T. Iritani, G. Cossu, S. Hashimoto, “Analysis of topological structure of the QCD vacuum with overlap-Dirac operator eigenmode”, PoS (LATTICE 2013), 187 (2014), 376, 7 pp. | DOI

[17] T. Kalaydzhyan, E. Shuryak, “Self-interacting QCD strings and string balls”, Phys. Rev. D, 90:2 (2014), 025031, 15 pp. | DOI

[18] T. Kalaydzhyan, E. Shuryak, “Collective interaction of QCD strings and early stages of high-multiplicity $pA$ collisions”, Phys. Rev. C, 90:1 (2014), 014901, 10 pp. | DOI

[19] D. E. Kharzeev, F. Loshaj, “Partial restoration of chiral symmetry in a confining string”, Phys. Rev. D, 90:3 (2014), 037501, 5 pp. | DOI

[20] P. Cea, L. Cosmai, A. Papa, “Chromoelectric flux tubes and coherence length in QCD”, Phys. Rev. D, 86:5 (2012), 054501, 10 pp. | DOI

[21] P. Cea, L. Cosmai, F. Cuteri, A. Papa, “Flux tubes in the $SU(3)$ vacuum: London penetration depth and coherence length”, Phys. Rev. D, 89:9 (2014), 094505, 7 pp. | DOI

[22] D. Kharzeev, K. Tuchin, “From color glass condensate to quark-gluon plasma through the event horizon”, Nucl. Phys. A, 753:3–4 (2005), 316–334 | DOI

[23] P. Castorina, D. Kharzeev, H. Satz, “Thermal hadronization and Hawking–Unruh radiation in QCD”, Eur. Phys. J. C, 52:1 (2007), 187–201 | DOI

[24] V. A. Abramovskii, V. N. Gribov, O. V. Kancheli, “Kharakter inklyuzivnykh spektrov i fluktuatsii v neuprugikh protsessakh, obuslovlennykh mnogopomeronnym obmenom”, YaF, 18:3 (1973), 595–616

[25] M. A. Braun, C. Pajares, “Particle production in nuclear collisions and string interactions”, Phys. Lett. B, 287:1–3 (1992), 154–158 | DOI

[26] A. Moskoso, K. Andres, K. Pakhares, “Vysokoenergeticheskii predel KKhD i novye eksperimentalnye dannye Bolshogo andronnogo kollaidera”, TMF, 176:1 (2013), 127–139 | DOI | DOI | Zbl

[27] E. V. Andronov, “Vliyanie mekhanizma sliyaniya kvark-glyuonnykh strun na dalnie bystrotnye korrelyatsii i fluktuatsii”, TMF, 185:1 (2015), 28–36 | DOI | DOI | MR

[28] M. A. Braun, J. Dias de Deus, A. S. Hirsch, C. Pajares, R. P. Scharenberg, B. K. Srivastava, “De-confinement and clustering of color sources in nuclear collisions”, Phys. Rep., 599 (2015), 1–50 | DOI | MR

[29] B. M. Barbashov, V. V. Nesterenko, Model relyativistskoi struny v fizike adronov, Energoatomizdat, M., 1987

[30] C. Shen, B. Schenke, “Longitudinal dynamics and particle production in relativistic nuclear collisions”, Phys. Rev. C, 105:6 (2022), 064905, 19 pp. | DOI

[31] C. Shen, B. Schenke, “Dynamical initial-state model for relativistic heavy-ion collisions”, Phys. Rev. C, 97:2 (2018), 024907, 14 pp. | DOI

[32] A. Capella, A. Krzywicki, “Unitarity corrections to short-range order: Long-range rapidity correlations”, Phys. Rev. D, 18:11 (1978), 4120–4133 | DOI

[33] J. Adam, D. Adamova, M. M. Aggarwal et al. [ALICE collab.], “Forward-backward multiplicity correlations in pp collisions at $\sqrt{s} = 0.9$, 2.76 and 7 TeV”, JHEP, 05 (2015), 097, 28 pp. | DOI

[34] V. V. Vechernin, “Asimptotika koeffitsientov korrelyatsii poperechnykh impulsov v modeli so sliyaniem strun”, TMF, 190:2 (2017), 293–311 | DOI | DOI | MR

[35] M. I. Gorenstein, M. Gaz'{z}icki, “Strongly intensive quantities”, Phys. Rev. C, 84:1 (2011), 014904, 5 pp. | DOI

[36] E. Andronov, V. Vechernin, “Strongly intensive observable between multiplicities in two acceptance windows in a string model”, Eur. Phys. J. A, 55:1 (2019), 14, 12 pp. | DOI

[37] S. N. Belokurova, V. V. Vechernin, “Silnointensivnye peremennye i dalnie korrelyatsii v modeli s reshetkoi v poperechnoi ploskosti”, TMF, 200:2 (2019), 195–214 | DOI | DOI | MR

[38] M. Gazdzicki, M. I. Gorenstein, M. Mackowiak-Pawlowska, “Normalization of strongly intensive quantities”, Phys. Rev. C, 88:2 (2013), 024907, 9 pp. | DOI

[39] N. Armesto, D. A. Derkach, G. A. Feofilov, “$p_t$-Multiplicity correlations in a multi-pomeron-exchange model with string collective effects”, Phys. Atom. Nucl., 71:12 (2008), 2087–2095 | DOI

[40] E. Bodnia, D. Derkach, G. A. Feofilov, V. Kovalenko, A. Puchkov, “Multi-pomeron exchange model for $pp$ and $p\bar{p}$ collisions at ultra-high energy”, PoS (QFTHEP2013), 183 (2014), 060 | DOI

[41] E. O. Bodnia, V. N. Kovalenko, A. M. Puchkov, G. A. Feofilov, “Correlation between mean transverse momentum and multiplicity of charged particles in $pp$ and $\bar{p}p$ collisions: From ISR to LHC”, AIP Conf. Proc., 1606:1 (2014), 273–282 | DOI

[42] E. V. Andronov, V. N. Kovalenko, “Silnointensivnye fluktuatsii mezhdu mnozhestvennostyu i polnym poperechnym impulsom v $pp$-vzaimodeistviyakh v podkhode multipomeronnogo obmena”, TMF, 200:3 (2019), 415–428 | DOI | DOI

[43] V. Kovalenko, G. Feofilov, A. Puchkov, F. Valiev, “Multipomeron model with collective effects for high-energy hadron collisions”, Universe, 8:4 (2022), 246, 25 pp. | DOI

[44] F. Liu, A. Tai, M. Gaździcki, R. Stock, “On transverse momentum event-by-event fluctuations in string hadronic models”, Eur. Phys. J. C, 8:4 (1999), 649–654 | DOI

[45] E. G. Ferreiro, F. del Moral, C. Pajares, “Transverse momentum fluctuations and percolation of strings”, Phys. Rev. C, 69:3 (2004), 034901, 5 pp. | DOI

[46] M. A. Braun, R. S. Kolevatov, C. Pajares, V. V. Vechernin, “Correlations between multiplicities and average transverse momentum in the percolating color strings approach”, Eur. Phys. J. C, 32:4 (2004), 535–546 | DOI

[47] M. A. Braun, C. Pajares, J. Ranf, “Fusion of strings vs. percolation and the transition to the quark-gluon plasma”, Internat. J. Modern Phys. A, 14:17 (1999), 2689–2704 | DOI

[48] M. A. Braun, F. del Moral, C. Pajares, “Percolation of strings and the relativistic energy data on multiplicity and transverse momentum distributions”, Phys. Rev. C, 65:2 (2002), 024907, 4 pp. | DOI

[49] V. V. Vechernin, S. N. Belokurova, “The strongly intensive observable in $pp$ collisions at LHC energies in the string fusion model”, J. Phys.: Conf. Ser., 1690 (2020), 012088, 7 pp. | DOI

[50] T. Sjöstrand, S. Ask, J. R. Christiansen et al., “An introduction to PYTHIA 8.2”, Comput. Phys. Commun., 191 (2015), 159–177 | DOI

[51] P. Skands, S. Carrazza, J. Rojo, “Tuning PYTHIA 8.1: the Monash 2013 tune”, Eur. Phys. J. C, 74:8 (2014), 3024, 39 pp. | DOI

[52] V. Vechernin, S. N. Belokurova, “Short- and long-range rapidity correlations in the model with a lattice in transverse plane”, EPJ Web Conf., 191 (2018), 04011, 8 pp. | DOI

[53] G. Feofilov, V. Kovalenko, A. Puchkov, “Correlation between heavy flavour production and multiplicity in pp and p-Pb collisions at high energy in the multi-pomeron exchange model”, EPJ Web Conf., 171 (2018), 18003, 4 pp. | DOI