Mots-clés : $R$-matrix, Verma modules
@article{TMF_2023_216_3_a2,
author = {D. Algethami and A. I. Mudrov},
title = {Shapovalov elements and {Hasse} diagrams},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {405--416},
year = {2023},
volume = {216},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a2/}
}
D. Algethami; A. I. Mudrov. Shapovalov elements and Hasse diagrams. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 3, pp. 405-416. http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a2/
[1] N. N. Shapovalov, “Ob odnoi bilineinoi forme na universalnoi obertyvayuschei algebre kompleksnoi poluprostoi algebry Li”, Funkts. analiz i ego prilozh., 6:4 (1972), 65–70 | DOI | MR | Zbl
[2] I. N. Bernshtein, I. M. Gelfand, S. I. Gelfand, “Struktura predstavlenii, porozhdennykh vektorami starshego vesa”, Funkts. analiz i ego prilozh., 5:1 (1971), 1–9 | DOI | MR | Zbl
[3] C. De Concini, V. G. Kac, “Representations of quantum groups at roots of 1”, Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory (Paris, 1989), Progress in Mathematics, 92, eds. J. Dixmier, A. Connes, Birkhäuser, Boston, MA, 1990, 471–506 | MR
[4] A. Mudrov, “Orthogonal basis for the Shapovalov form on $U_q(\mathfrak{sl}(n+1))$”, Rev. Math. Phys., 27:2 (2015), 1550004, 23 pp. | DOI | MR
[5] I. M. Musson, Šhapovalov elements and the Jantzen sum formula for contragradient Lie superalgebras, arXiv: 1710.10528
[6] A. Mudrov, Shapovalov elements for classical and quantum groups, arXiv: 2301.02624
[7] A. Mudrov, “$R$-matrix and inverse Shapovalov form”, J. Math. Phys., 57:5 (2016), 051706, 10 pp. | DOI | MR
[8] J. G. Nagel, M. Moshinsky, “Operators that lower or raise the irreducible vector spaces of $U_{n-1}$ contained in an irreducible vector space of $U_n$”, J. Math. Phys., 6:5 (1965), 682–694 | DOI | MR
[9] F. G. Malikov, B. D. Feigin, D. B. Fuks, “Osobye vektory v modulyakh Verma nad algebrami Katsa–Mudi”, Funkts. analiz i ego prilozh., 20:2 (1986), 25–37 | DOI | MR | Zbl
[10] S. Kumar, G. Letzter, “Shapovalov determinant for restricted and quantized restricted enveloping algebras”, Pacific J. Math., 179:1 (1997), 123–161 | DOI | MR
[11] D. P. Zhelobenko, Predstavlenie reduktivnykh algebr Li, Nauka, M., 1994
[12] V. G. Drinfeld, “Kvantovye gruppy”, Differentsialnaya geometriya, gruppy Li i mekhanika. VIII, Zap. nauch. sem. LOMI, 155, Nauka, L., 1986, 18–49 | DOI | Zbl
[13] V. Chari, A. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, Cambridge, 1995 | MR
[14] T. Ashton, A. Mudrov, “R-matrix and Mickelsson algebras for orthosymplectic quantum groups”, J. Math. Sci., 56:8 (2015), 081701, 8 pp. | DOI | MR
[15] A. Baranov, A. Mudrov, V. Ostapenko, Algebr. Represent. Theory, 23:4 (2020), Quantum exceptional group $G_2$ and its semisimple conjugacy classes, arXiv: 1609.02483 | DOI | MR