Three-loop $\beta$-functions and NSVZ relations for the MSSM regularized by higher covariant derivatives
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 3, pp. 590-607 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The three-loop $\beta$-functions are obtained for the Minimal Supersymmetric Standard Model (MSSM) regularized by higher covariant derivatives for an arbitrary supersymmetric renormalization prescription. The two-loop anomalous dimensions defined in terms of the bare couplings are found for all MSSM chiral matter superfields. Using the NSVZ relations, the three-loop $\beta$-functions also defined in terms of the bare couplings are constructed. This is possible because the NSVZ equations are satisfied in all orders for the renormalization group functions defined in terms of the bare couplings under the chosen regularization. Using this result, the same two-loop anomalous dimensions and $\beta$-functions standardly defined in terms of the renormalized couplings are obtained for an arbitrary supersymmetric renormalization prescription. It is also verified that for a certain renormalization prescription, the result coincides with the $\overline{DR}$ scheme one obtained earlier, and can therefore be considered its independent confirmation.
Keywords: minimal supersymmetric standard model, regularization, renormalization prescriptions, renormalization group functions.
@article{TMF_2023_216_3_a15,
     author = {K. V. Stepanyantz and O. V. Haneychuk and V. Yu. Shirokova},
     title = {Three-loop $\beta$-functions and {NSVZ} relations for {the~MSSM} regularized by higher covariant derivatives},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {590--607},
     year = {2023},
     volume = {216},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a15/}
}
TY  - JOUR
AU  - K. V. Stepanyantz
AU  - O. V. Haneychuk
AU  - V. Yu. Shirokova
TI  - Three-loop $\beta$-functions and NSVZ relations for the MSSM regularized by higher covariant derivatives
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 590
EP  - 607
VL  - 216
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a15/
LA  - ru
ID  - TMF_2023_216_3_a15
ER  - 
%0 Journal Article
%A K. V. Stepanyantz
%A O. V. Haneychuk
%A V. Yu. Shirokova
%T Three-loop $\beta$-functions and NSVZ relations for the MSSM regularized by higher covariant derivatives
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 590-607
%V 216
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a15/
%G ru
%F TMF_2023_216_3_a15
K. V. Stepanyantz; O. V. Haneychuk; V. Yu. Shirokova. Three-loop $\beta$-functions and NSVZ relations for the MSSM regularized by higher covariant derivatives. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 3, pp. 590-607. http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a15/

[1] U. Amaldi, W. de Boer, H. Furstenau, “Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP”, Phys. Lett. B , 260:3–4 (1991), 447–455 | DOI

[2] J. R. Ellis, S. Kelley, D. V. Nanopoulos, “Probing the desert using gauge coupling unification”, Phys. Lett. B, 260:1–2 (1991), 131–137 | DOI

[3] P. Langacker, M. Luo, “Implications of precision electroweak experiments for $m_t$, $\rho_0$, $\sin^2 \theta_W$, and grand unification”, Phys. Rev. D, 44:3 (1991), 817–822 | DOI

[4] V. A. Novikov, M. A. Shifman, A. I. Vainshtein, V. I. Zakharov, “Exact Gell-Mann–Low function of supersymmetric Yang–Mills theories from instanton calculus”, Nucl. Phys. B, 229:2 (1983), 381–393 | DOI

[5] M. A. Shifman, A. I. Vainshtein, “Solution of the anomaly puzzle in SUSY gauge theories and the Wilson operator expansion”, Nucl. Phys. B, 277 (1986), 456–486 | DOI

[6] V. A. Novikov, M. A. Shifman, A. I. Vainshtein, V. I. Zakharov, “The $\beta$-function in supersymmetric gauge theories. Instantons versus traditional approach”, Phys. Lett. B, 166:3 (1986), 329–333 | DOI

[7] D. R. T. Jones, “More on the axial anomaly in supersymmetric Yang–Mills theory”, Phys. Lett. B, 123:1–2 (1983), 45–46 | DOI | MR

[8] I. Jack, D. R. T. Jones, C. G. North, “$\mathcal N = 1$ supersymmetry and the three loop gauge $\beta$-function”, Phys. Lett. B, 386:1–4 (1996), 138–140 | DOI

[9] I. Jack, D. R. T. Jones, C. G. North, “Scheme dependence and the NSVZ $\beta$-function”, Nucl. Phys. B, 486:1–2 (1997), 479–499 | DOI

[10] I. Jack, D. R. T. Jones, A. Pickering, “The connection between DRED and NSVZ renormalisation schemes”, Phys. Lett. B, 435:1–2 (1998), 61–66 | DOI

[11] W. Siegel, “Supersymmetric dimensional regularization via dimensional reduction”, Phys. Lett. B, 84:2 (1979), 193–196 | DOI | MR

[12] W. A. Bardeen, A. J. Buras, D. W. Duke, T. Muta, “Deep inelastic scattering beyond the leading order in asymptotically free gauge theories”, Phys. Rev. D, 18:11 (1978), 3998–4017 | DOI

[13] L. V. Avdeev, O. V. Tarasov, “The three-loop $\beta$-function in the $\mathcal N=1,2,4$ supersymmetric Yang–Mills theories”, Phys. Lett. B, 112:4–5 (1982), 356–358 | DOI

[14] R. V. Harlander, D. R. T. Jones, P. Kant, L. Mihaila, M. Steinhauser, “Four-loop $\beta$-function and mass anomalous dimension in dimensional reduction”, JHEP, 12 (2006), 024, 13 pp., arXiv: hep-ph/0610206 | DOI | MR

[15] W. Siegel, “Inconsistency of supersymmetric dimensional regularization”, Phys. Lett. B, 94:1 (1980), 37–40 | DOI | MR

[16] L. V. Avdeev, “Noninvariance of regularization by dimensional reduction: An explicit example of supersymmetry breaking”, Phys. Lett. B, 117:5 (1982), 317–320 | DOI

[17] L. V. Avdeev, G. A. Chochia, A. A. Vladimirov, “On the scope of supersymmetric dimensional regularization”, Phys. Lett. B, 105:4 (1981), 272–274 | DOI

[18] L. V. Avdeev, A. A. Vladimirov, “Dimensional regularization and supersymmetry”, Nucl. Phys. B, 219:1 (1983), 262–276 | DOI

[19] V. N. Velizhanin, “Three-loop renormalization of the $\mathcal N=1$, $\mathcal N=2$, $\mathcal N=4$ supersymmetric Yang–Mills theories”, Nucl. Phys. B, 818:1 (2009), 95–100 | DOI | MR

[20] A. A. Slavnov, “Invariant regularization of non-linear chiral theories”, Nucl. Phys. B, 31:2 (1971), 301–315 | DOI | MR

[21] A. A. Slavnov, “Invariantnaya regulyarizatsiya kalibrovochnykh teorii”, TMF, 13:2 (1972), 174–177 | DOI

[22] K. V. Stepanyantz, “The all-loop perturbative derivation of the NSVZ $\beta$-function and the NSVZ scheme in the non-Abelian case by summing singular contributions”, Eur. Phys. J. C, 80 (2020), 911, 28 pp. | DOI

[23] K. V. Stepanyantz, “The $\beta$-function of $\mathcal{N} = 1$ supersymmetric gauge theories regularized by higher covariant derivatives as an integral of double total derivatives”, JHEP, 10 (2019), 011, 48 pp., arXiv: 1908.04108 | DOI | MR

[24] K. V. Stepanyantz, “Non-renormalization of the $V\overline{c}c$-vertices in $\mathcal{N} = 1$ supersymmetric theories”, Nucl. Phys. B, 909 (2016), 316–335 | DOI | MR

[25] A. L. Kataev, K. V. Stepanyantz, “NSVZ scheme with the higher derivative regularization for $\mathcal{N} = 1$ SQED”, Nucl. Phys. B, 875:2 (2013), 459–482 | DOI | MR

[26] D. S. Korneev, D. V. Plotnikov, K. V. Stepanyantz, N. A. Tereshina, “The NSVZ relations for $\mathcal{N} = 1$ supersymmetric theories with multiple gauge couplings”, JHEP, 10:046 (2021), 45 pp., arXiv: 2108.05026 | DOI | MR

[27] V. K. Krivoschekov, “Invariantnaya regulyarizatsiya dlya supersimmetrichnykh kalibrovochnykh teorii”, TMF, 36:3 (1978), 291–302 | DOI | MR

[28] P. C. West, “Higher derivative regulation of supersymmetric theories”, Nucl. Phys. B, 268:1 (1986), 113–124 | DOI | MR

[29] A. A. Slavnov, L. D. Faddeev, Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1978 | MR | MR | Zbl

[30] I. Jack, D. R. T. Jones, A. F. Kord, “Snowmass benchmark points and three-loop running”, Ann. Phys., 316:1 (2005), 213–233 | DOI

[31] O. Piguet, K. Sibold, “Renormalization of $\mathcal{N} = 1$ supersymmetrical Yang–Mills theories: (I). The classical theory”, Nucl. Phys. B, 197:2 (1982), 257–271 | DOI

[32] J. W. Juer, D. Storey, “Nonlinear renormalization in superfield gauge theories”, Phys. Lett. B, 119:1–3 (1982), 125–127 | DOI

[33] A. E. Kazantsev, K. V. Stepanyantz, “Two-loop renormalization of the matter superfields and finiteness of $\mathcal{N} = 1$ supersymmetric gauge theories regularized by higher derivatives”, JHEP, 06 (2020), 108, 31 pp., arXiv: 2004.00330 | DOI | MR

[34] O. V. Haneychuk, V. Yu. Shirokova, K. V. Stepanyantz, “Three-loop $\beta$-functions and two-loop anomalous dimensions for MSSM regularized by higher covariant derivatives in an arbitrary supersymmetric subtraction scheme”, JHEP, 09 (2022), 189, 32 pp., arXiv: 2207.11944 | DOI | MR

[35] I. O. Goriachuk, A. L. Kataev, K. V. Stepanyantz, “A class of the NSVZ renormalization schemes for $\mathcal{N} = 1$ SQED”, Phys. Lett. B, 785 (2018), 561–566 | DOI