@article{TMF_2023_216_3_a15,
author = {K. V. Stepanyantz and O. V. Haneychuk and V. Yu. Shirokova},
title = {Three-loop $\beta$-functions and {NSVZ} relations for {the~MSSM} regularized by higher covariant derivatives},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {590--607},
year = {2023},
volume = {216},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a15/}
}
TY - JOUR AU - K. V. Stepanyantz AU - O. V. Haneychuk AU - V. Yu. Shirokova TI - Three-loop $\beta$-functions and NSVZ relations for the MSSM regularized by higher covariant derivatives JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 590 EP - 607 VL - 216 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a15/ LA - ru ID - TMF_2023_216_3_a15 ER -
%0 Journal Article %A K. V. Stepanyantz %A O. V. Haneychuk %A V. Yu. Shirokova %T Three-loop $\beta$-functions and NSVZ relations for the MSSM regularized by higher covariant derivatives %J Teoretičeskaâ i matematičeskaâ fizika %D 2023 %P 590-607 %V 216 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a15/ %G ru %F TMF_2023_216_3_a15
K. V. Stepanyantz; O. V. Haneychuk; V. Yu. Shirokova. Three-loop $\beta$-functions and NSVZ relations for the MSSM regularized by higher covariant derivatives. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 3, pp. 590-607. http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a15/
[1] U. Amaldi, W. de Boer, H. Furstenau, “Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP”, Phys. Lett. B , 260:3–4 (1991), 447–455 | DOI
[2] J. R. Ellis, S. Kelley, D. V. Nanopoulos, “Probing the desert using gauge coupling unification”, Phys. Lett. B, 260:1–2 (1991), 131–137 | DOI
[3] P. Langacker, M. Luo, “Implications of precision electroweak experiments for $m_t$, $\rho_0$, $\sin^2 \theta_W$, and grand unification”, Phys. Rev. D, 44:3 (1991), 817–822 | DOI
[4] V. A. Novikov, M. A. Shifman, A. I. Vainshtein, V. I. Zakharov, “Exact Gell-Mann–Low function of supersymmetric Yang–Mills theories from instanton calculus”, Nucl. Phys. B, 229:2 (1983), 381–393 | DOI
[5] M. A. Shifman, A. I. Vainshtein, “Solution of the anomaly puzzle in SUSY gauge theories and the Wilson operator expansion”, Nucl. Phys. B, 277 (1986), 456–486 | DOI
[6] V. A. Novikov, M. A. Shifman, A. I. Vainshtein, V. I. Zakharov, “The $\beta$-function in supersymmetric gauge theories. Instantons versus traditional approach”, Phys. Lett. B, 166:3 (1986), 329–333 | DOI
[7] D. R. T. Jones, “More on the axial anomaly in supersymmetric Yang–Mills theory”, Phys. Lett. B, 123:1–2 (1983), 45–46 | DOI | MR
[8] I. Jack, D. R. T. Jones, C. G. North, “$\mathcal N = 1$ supersymmetry and the three loop gauge $\beta$-function”, Phys. Lett. B, 386:1–4 (1996), 138–140 | DOI
[9] I. Jack, D. R. T. Jones, C. G. North, “Scheme dependence and the NSVZ $\beta$-function”, Nucl. Phys. B, 486:1–2 (1997), 479–499 | DOI
[10] I. Jack, D. R. T. Jones, A. Pickering, “The connection between DRED and NSVZ renormalisation schemes”, Phys. Lett. B, 435:1–2 (1998), 61–66 | DOI
[11] W. Siegel, “Supersymmetric dimensional regularization via dimensional reduction”, Phys. Lett. B, 84:2 (1979), 193–196 | DOI | MR
[12] W. A. Bardeen, A. J. Buras, D. W. Duke, T. Muta, “Deep inelastic scattering beyond the leading order in asymptotically free gauge theories”, Phys. Rev. D, 18:11 (1978), 3998–4017 | DOI
[13] L. V. Avdeev, O. V. Tarasov, “The three-loop $\beta$-function in the $\mathcal N=1,2,4$ supersymmetric Yang–Mills theories”, Phys. Lett. B, 112:4–5 (1982), 356–358 | DOI
[14] R. V. Harlander, D. R. T. Jones, P. Kant, L. Mihaila, M. Steinhauser, “Four-loop $\beta$-function and mass anomalous dimension in dimensional reduction”, JHEP, 12 (2006), 024, 13 pp., arXiv: hep-ph/0610206 | DOI | MR
[15] W. Siegel, “Inconsistency of supersymmetric dimensional regularization”, Phys. Lett. B, 94:1 (1980), 37–40 | DOI | MR
[16] L. V. Avdeev, “Noninvariance of regularization by dimensional reduction: An explicit example of supersymmetry breaking”, Phys. Lett. B, 117:5 (1982), 317–320 | DOI
[17] L. V. Avdeev, G. A. Chochia, A. A. Vladimirov, “On the scope of supersymmetric dimensional regularization”, Phys. Lett. B, 105:4 (1981), 272–274 | DOI
[18] L. V. Avdeev, A. A. Vladimirov, “Dimensional regularization and supersymmetry”, Nucl. Phys. B, 219:1 (1983), 262–276 | DOI
[19] V. N. Velizhanin, “Three-loop renormalization of the $\mathcal N=1$, $\mathcal N=2$, $\mathcal N=4$ supersymmetric Yang–Mills theories”, Nucl. Phys. B, 818:1 (2009), 95–100 | DOI | MR
[20] A. A. Slavnov, “Invariant regularization of non-linear chiral theories”, Nucl. Phys. B, 31:2 (1971), 301–315 | DOI | MR
[21] A. A. Slavnov, “Invariantnaya regulyarizatsiya kalibrovochnykh teorii”, TMF, 13:2 (1972), 174–177 | DOI
[22] K. V. Stepanyantz, “The all-loop perturbative derivation of the NSVZ $\beta$-function and the NSVZ scheme in the non-Abelian case by summing singular contributions”, Eur. Phys. J. C, 80 (2020), 911, 28 pp. | DOI
[23] K. V. Stepanyantz, “The $\beta$-function of $\mathcal{N} = 1$ supersymmetric gauge theories regularized by higher covariant derivatives as an integral of double total derivatives”, JHEP, 10 (2019), 011, 48 pp., arXiv: 1908.04108 | DOI | MR
[24] K. V. Stepanyantz, “Non-renormalization of the $V\overline{c}c$-vertices in $\mathcal{N} = 1$ supersymmetric theories”, Nucl. Phys. B, 909 (2016), 316–335 | DOI | MR
[25] A. L. Kataev, K. V. Stepanyantz, “NSVZ scheme with the higher derivative regularization for $\mathcal{N} = 1$ SQED”, Nucl. Phys. B, 875:2 (2013), 459–482 | DOI | MR
[26] D. S. Korneev, D. V. Plotnikov, K. V. Stepanyantz, N. A. Tereshina, “The NSVZ relations for $\mathcal{N} = 1$ supersymmetric theories with multiple gauge couplings”, JHEP, 10:046 (2021), 45 pp., arXiv: 2108.05026 | DOI | MR
[27] V. K. Krivoschekov, “Invariantnaya regulyarizatsiya dlya supersimmetrichnykh kalibrovochnykh teorii”, TMF, 36:3 (1978), 291–302 | DOI | MR
[28] P. C. West, “Higher derivative regulation of supersymmetric theories”, Nucl. Phys. B, 268:1 (1986), 113–124 | DOI | MR
[29] A. A. Slavnov, L. D. Faddeev, Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1978 | MR | MR | Zbl
[30] I. Jack, D. R. T. Jones, A. F. Kord, “Snowmass benchmark points and three-loop running”, Ann. Phys., 316:1 (2005), 213–233 | DOI
[31] O. Piguet, K. Sibold, “Renormalization of $\mathcal{N} = 1$ supersymmetrical Yang–Mills theories: (I). The classical theory”, Nucl. Phys. B, 197:2 (1982), 257–271 | DOI
[32] J. W. Juer, D. Storey, “Nonlinear renormalization in superfield gauge theories”, Phys. Lett. B, 119:1–3 (1982), 125–127 | DOI
[33] A. E. Kazantsev, K. V. Stepanyantz, “Two-loop renormalization of the matter superfields and finiteness of $\mathcal{N} = 1$ supersymmetric gauge theories regularized by higher derivatives”, JHEP, 06 (2020), 108, 31 pp., arXiv: 2004.00330 | DOI | MR
[34] O. V. Haneychuk, V. Yu. Shirokova, K. V. Stepanyantz, “Three-loop $\beta$-functions and two-loop anomalous dimensions for MSSM regularized by higher covariant derivatives in an arbitrary supersymmetric subtraction scheme”, JHEP, 09 (2022), 189, 32 pp., arXiv: 2207.11944 | DOI | MR
[35] I. O. Goriachuk, A. L. Kataev, K. V. Stepanyantz, “A class of the NSVZ renormalization schemes for $\mathcal{N} = 1$ SQED”, Phys. Lett. B, 785 (2018), 561–566 | DOI