Dark matter as a gravitational effect in the embedding theory approach
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 3, pp. 559-576 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss a possibility to explain observations usually related to the existence of dark matter by passing from the general relativity (GR) theory to a modified theory of gravity, the embedding theory proposed by Regge and Teitelboim. In this approach, it is assumed that our space–time is a four-dimensional surface in a ten-dimensional flat ambient space. This clear geometric interpretation of a change of a variable in the GR action leading to a new theory distinguishes this approach from the known alternatives: mimetic gravity and other variants. After the passage to the modified theory of gravity, additional solutions that can be interpreted as GR solutions with additional fictitious matter appear besides the solutions corresponding to GR. In that theory, one can try to see dark matter, with no need to assume the existence of dark matter as a fundamental object; its role is played by the degrees of freedom of modified gravity. In the embedding theory, the number of degrees of freedom of fictitious matter is sufficiently large, and hence an explanation of all observations without complicating the theory any further can be attempted.
Keywords: dark matter, embedding theory, modified theory of gravity, isometric.
@article{TMF_2023_216_3_a13,
     author = {S. A. Paston},
     title = {Dark matter as a~gravitational effect in the~embedding theory approach},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {559--576},
     year = {2023},
     volume = {216},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a13/}
}
TY  - JOUR
AU  - S. A. Paston
TI  - Dark matter as a gravitational effect in the embedding theory approach
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 559
EP  - 576
VL  - 216
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a13/
LA  - ru
ID  - TMF_2023_216_3_a13
ER  - 
%0 Journal Article
%A S. A. Paston
%T Dark matter as a gravitational effect in the embedding theory approach
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 559-576
%V 216
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a13/
%G ru
%F TMF_2023_216_3_a13
S. A. Paston. Dark matter as a gravitational effect in the embedding theory approach. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 3, pp. 559-576. http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a13/

[1] J. Silk, “Challenges in cosmology from the Big Bang to dark energy, dark matter and galaxy formation”, JPS Conf. Proc., 14 (2017), 010101, 13 pp., arXiv: 1611.09846 | DOI

[2] D. S. Gorbunov, V. A. Rubakov, Vvedenie v teoriyu rannei Vselennoi. Teoriya goryachego Bolshogo vzryva, URSS, M., 2022

[3] P. Salucci, C. di Paolo, Fundamental properties of the dark and the luminous matter from low surface brightness discs, arXiv: 2005.03520

[4] T. M. Undagoitia, L. Rauch, “Dark matter direct-detection experiments”, J. Phys. G, 43:1 (2015), 013001, arXiv: 1509.08767 | DOI

[5] J. M. Gaskins, “A review of indirect searches for particle dark matter”, Contemp. Phys., 57:4 (2016), 496–525, arXiv: 1604.00014 | DOI

[6] G. Arcadi, M. Dutra, P. Ghosh, M. Lindner, Y. Mambrini, M. Pierre, S. Profumo, F. S. Queiroz, “The waning of the WIMP? A review of models, searches, and constraints”, Eur. Phys. J. C, 78 (2018), 203, 57 pp., arXiv: 1703.07364 | DOI

[7] W. Hu, R. Barkana, A. Gruzinov, “Fuzzy cold dark matter: the wave properties of ultralight particles”, Phys. Rev. Lett., 85:6 (2000), 1158–1161, arXiv: astro-ph/0003365 | DOI

[8] S. Tulin, H.-B. Yu, “Dark matter self-interactions and small scale structure”, Phys. Rep., 730 (2018), 1–57, arXiv: 1705.02358 | DOI | MR

[9] A. Del Popolo, M. Le Delliou, “Small scale problems of the $\Lambda$CDM model: a short review”, Galaxies, 5:1 (2017), 17, 46 pp., arXiv: 1606.07790 | DOI

[10] M. Milgrom, “A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis”, Astrophys. J., 270 (1983), 365–370 | DOI

[11] M. Milgrom, “MOND vs. dark matter in light of historical parallels”, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 71 (2020), 170–195, arXiv: 1910.04368 | DOI

[12] S. Capozziello, M. De Laurentis, “Extended theories of gravity”, Phys. Rep., 509:4–5 (2011), 167–321, arXiv: 1108.6266 | DOI | MR

[13] A. H. Chamseddine, V. Mukhanov, “Mimetic dark matter”, JHEP, 2013:11 (2013), 135, 5 pp., arXiv: 1308.5410 | DOI

[14] A. A. Sheykin, D. P. Solovyev, V. V. Sukhanov, S. A. Paston, “Modifications of gravity via differential transformations of field variables”, Symmetry, 12:2 (2020), 240, 15 pp., arXiv: 2002.01745 | DOI

[15] D. Clowe, A. Gonzalez, M. Markevitch, “Weak lensing mass reconstruction of the interacting cluster 1E 0657-558: Direct evidence for the existence of dark matter”, Astrophys. J., 604:2 (2004), 596–603, arXiv: astro-ph/0312273 | DOI

[16] A. Golovnev, “On the recently proposed mimetic Dark Matter”, Phys. Lett. B, 728 (2014), 39–40, arXiv: 1310.2790 | DOI

[17] S. A. Paston, “Forms of action for perfect fluid in general relativity and mimetic gravity”, Phys. Rev. D, 96:8 (2017), 084059, 8 pp., arXiv: 1708.03944 | DOI | MR

[18] A. H. Chamseddine, V. Mukhanov, A. Vikman, “Cosmology with mimetic matter”, J. Cosmol. Astropart. Phys., 2014:6 (2014), 017, arXiv: 1403.3961 | DOI

[19] L. Mirzagholi, A. Vikman, “Imperfect dark matter”, J. Cosmol. Astropart. Phys., 2015:06 (2015), 028, 20 pp., arXiv: 1412.7136 | DOI | MR

[20] Sh. Hirano, S. Nishi, T. Kobayashi, “Healthy imperfect dark matter from effective theory of mimetic cosmological perturbations”, J. Cosmol. Astropart. Phys., 2017:07 (2017), 009, arXiv: 1704.06031 | DOI

[21] L. Sebastiani, S. Vagnozzi, R. Myrzakulov, “Mimetic gravity: a review of recent developments and applications to cosmology and astrophysics”, Adv. High Energy Phys., 2017 (2017), 3156915, 43 pp., arXiv: 1612.08661 | DOI

[22] T. Regge, C. Teitelboim, “General relativity à la string: a progress report”, Proceedings of the First Marcel Grossmann Meeting (Trieste, Italy, 1975), ed. R. Ruffini, North-Holland, Amsterdam, 1977, 77–88, arXiv: 1612.05256

[23] A. Friedman, “Local isometric imbedding of Riemannian manifolds with indefinite metrics”, J. Math. Mech., 10 (1961), 625–649 | MR

[24] S. A. Paston, “Gravitatsiya kak teoriya polya v ploskom prostranstve-vremeni”, TMF, 169:2 (2011), 285–296, arXiv: 1111.1104 | DOI | DOI | MR

[25] S. A. Paston, V. A. Franke, “Kanonicheskaya formulirovka vlozhennoi teorii gravitatsii, ekvivalentnaya obschei teorii otnositelnosti Einshteina”, TMF, 153:2 (2007), 271–288, arXiv: 0711.0576 | DOI | DOI | MR | Zbl

[26] M. Pavšič, “On the quantisation of gravity by embedding spacetime in a higher-dimensional space”, Class. Quantum Grav., 2:6 (1985), 869–889, arXiv: 1403.6316 | DOI | MR

[27] S. Deser, F. A. E. Pirani, D. C. Robinson, “New embedding model of general relativity”, Phys. Rev. D, 14:12 (1976), 3301–3303 | DOI

[28] M. D. Maia, “On the integrability conditions for extended objects”, Class. Quantum Grav., 6:2 (1989), 173–183 | DOI | MR

[29] F. B. Estabrook, R. S. Robinson, H. R. Wahlquist, “Constraint-free theories of gravitation”, Class. Quantum Grav., 16:3 (1999), 911–918 | DOI | MR

[30] D. Karasik, A. Davidson, “Geodetic brane gravity”, Phys. Rev. D, 67:6 (2003), 064012, 17 pp., arXiv: gr-qc/0207061 | DOI | MR

[31] L. D. Faddeev, “Novye dinamicheskie peremennye teorii tyagoteniya Einshteina”, TMF, 166:3 (2011), 323–335, arXiv: ; L. D. Faddeev, New variables for the Einstein theory of gravitation, arXiv: ; $3+1$ decomposition in the new action for the Einstein Theory of Gravitation, arXiv: 0906.46390911.02821003.2311 | DOI | DOI | MR

[32] A. A. Sheykin, S. A. Paston, “The approach to gravity as a theory of embedded surface”, AIP Conf. Proc., 1606:1 (2014), 400–406, arXiv: 1402.1121 | DOI

[33] S. A. Paston, A. N. Semenova, “Constraint algebra for Regge–Teitelboim formulation of gravity”, Internat. J. Theor. Phys., 49:11 (2010), 2648–2658, arXiv: 1003.0172 | DOI | MR

[34] S. A. Paston, E. N. Semenova, “External time canonical formalism for gravity in terms of embedding theory”, Gravit. Cosmol., 21:3 (2015), 181–190, arXiv: 1509.01529 | DOI | MR

[35] V. Tapia, “Gravitation à la string”, Class. Quantum Grav., 6:3 (1989), L49–L56 | DOI | MR

[36] V. A. Franke, V. Tapia, “The ADM Lagrangian in extrinsic gravity”, Nuovo Cim. B, 107:6 (1992), 611–630 | DOI | MR

[37] S. A. Paston, E. N. Semenova, V. A. Franke, A. A. Sheykin, “Algebra of implicitly defined constraints for gravity as the general form of embedding theory”, Gravit. Cosmol., 23:1 (2017), 1–7, arXiv: 1705.07361 | DOI | MR

[38] A. Aguilar-Salas, A. Molgado, E. Rojas, “Hamilton–Jacobi approach for Regge–Teitelboim cosmology”, Class. Quantum Grav., 37:14 (2020), 145003, 21 pp., arXiv: 2004.01650 | DOI | MR

[39] S. A. Paston, T. I. Zaitseva, “Canonical formulation of embedding gravity in a form of general relativity with dark matter”, Gravit. Cosmol., 29:2 (2023), 153-162, arXiv: 2207.13654 | DOI | MR

[40] A. Davidson, D. Karasik, Y. Lederer, Cold dark matter from dark energy, arXiv: gr-qc/0111107

[41] S. A. Paston, A. A. Sheykin, “From the embedding theory to general relativity in a result of inflation”, Internat. J. Modern Phys. D, 21:5 (2012), 1250043, 19 pp., arXiv: 1106.5212 | DOI | MR

[42] S. Kuptsov, M. Ioffe, S. Manida, S. Paston, “Weak field limit for embedding gravity”, Universe, 8:12 (2022), 635, 13 pp., arXiv: 2210.13272 | DOI

[43] M. Pavsic, V. Tapia, Resource letter on geometrical results for embeddings and branes, arXiv: gr-qc/0010045

[44] S. A. Paston, A. A. Sheykin, “Embedding theory as new geometrical mimetic gravity”, Eur. Phys. J. C, 78:12 (2018), 989, 6 pp., arXiv: 1806.10902 | DOI

[45] S. Paston, T. Zaitseva, “Nontrivial isometric embeddings for flat spaces”, Universe, 7:12 (2021), 477, 14 pp., arXiv: 2111.04188 | DOI

[46] S. A. Paston, “Dark matter from non-relativistic embedding gravity”, Modern Phys. Lett. A, 36:15 (2021), 2150101, 12 pp., arXiv: 2006.09026 | DOI | MR

[47] S. Paston, “Non-relativistic limit of embedding gravity as General Relativity with dark matter”, Universe, 6:10 (2020), 163, arXiv: 2009.06950 | DOI

[48] A. D. Kapustin, S. A. Paston, “Analytical analysis of the origin of core-cusp matter density distributions in galaxies”, J. Cosmol. Astropart. Phys., 2022:11 (2022), 025, arXiv: 2207.04288 | DOI