On the Landau–Khalatnikov–Fradkin transformation in quenched $\mathrm{QED}_3$
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 3, pp. 548-558 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present the results of studies of the gauge covariance of the massless fermion propagator in three-dimensional quenched quantum electrodynamics in the framework of dimensional regularization in $d=3-2\varepsilon$. Assuming the finiteness of the perturbative expansion, i.e., the existence of the limit $\varepsilon\to 0$, we show that exactly for $d=3$ all odd perturbative coefficients starting from the third order must be equal to zero in any gauge. To test this, we calculate three- and four-loop corrections to the massless fermion propagator. Three-loop corrections are finite and gauge invariant, while four-loop corrections have singularities. The terms depending on the gauge parameter are completely determined by the lower orders in accordance with the Landau–Khalatnikov–Fradkin transformation.
Keywords: quantum electrodynamics, gauge dependence
Mots-clés : fermion propagator, multiloop calculations.
@article{TMF_2023_216_3_a12,
     author = {A. V. Kotikov},
     title = {On {the~Landau{\textendash}Khalatnikov{\textendash}Fradkin} transformation in quenched $\mathrm{QED}_3$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {548--558},
     year = {2023},
     volume = {216},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a12/}
}
TY  - JOUR
AU  - A. V. Kotikov
TI  - On the Landau–Khalatnikov–Fradkin transformation in quenched $\mathrm{QED}_3$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 548
EP  - 558
VL  - 216
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a12/
LA  - ru
ID  - TMF_2023_216_3_a12
ER  - 
%0 Journal Article
%A A. V. Kotikov
%T On the Landau–Khalatnikov–Fradkin transformation in quenched $\mathrm{QED}_3$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 548-558
%V 216
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a12/
%G ru
%F TMF_2023_216_3_a12
A. V. Kotikov. On the Landau–Khalatnikov–Fradkin transformation in quenched $\mathrm{QED}_3$. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 3, pp. 548-558. http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a12/

[1] T. Appelquist, M. Bowick, D. Karabali, L. C. R. Wijewardhana, “Spontaneous chiral-symmetry breaking in three-dimensional QED”, Phys. Rev. D, 33:12 (1986), 3704–3713 ; E. D. Pisarski, “Chiral-symmetry breaking in three-dimensional electrodynamics”, 29:10 (1984), 2423–2452 ; T. Appelquist, D. Nash, L. C. R. Wijewardhana, “Critical behavior in ($2+1$)-dimensional QED”, Phys. Rev. Lett., 60:25 (1988), 2575–2578 ; D. Nash, “Higher-order corrections in ($2+1$)-dimensional QED”, 62:26 (1989), 3024–3026 | DOI | DOI | DOI | MR | DOI

[2] A. V. Kotikov, “O kriticheskom povedenii trekhmernoi elektrodinamiki”, Pisma v ZhETF, 58:10 (1993), 785–789; A. V. Kotikov, “On the сritical behavior of ${(2+1)}$-dimensional QED”, ЯФ, 75:7 (2012), 945–947, arXiv: 1104.3888 | DOI

[3] D. Atkinson, P. W. Johnson, P. Maris, “Dynamical mass generation in three-dimensional QED: Improved vertex function”, Phys. Rev. D, 42:2 (1990), 602–609 ; V. P. Gusynin, A. H. Hams, M. Reenders, “($2+1$)-Dimensional QED with dynamically massive fermions in vacuum polarization”, Phys. Rev. D, 53:4 (1996), 2227–2235 ; P. Maris, “Influence of the full vertex and vacuum polarization on the fermion propagator in $(2+1)$-dimensional QED”, Phys. Rev. D, 54:6 (1996), 4049–4058 ; V. P. Gusynin, M. Reenders, “Infrared cutoff dependence of the critical flavor number in three-dimensional QED”, Phys. Rev. D, 68:2 (2003), 025017, 5 pp. ; C. S. Fischer, R. Alkofer, T. Dahm, P. Maris, “Dynamical chiral symmetry breaking in unquenched QED$_3$”, Phys. Rev. D, 70:7 (2004), 073007, 20 pp. ; M. R. Pennington, D. Walsh, “Masses from nothing. A non-perturbative study of QED$_3$”, Phys. Lett. B, 253:1–2 (1991), 246–251 | DOI | DOI | DOI | DOI | DOI | DOI

[4] V. Gusynin, P. Pyatkovskiy, “Critical number of fermions in three-dimensional QED”, Phys. Rev. D, 94:12 (2016), 125009, 14 pp. ; A. V. Kotikov, V. I. Shilin, S. Teber, “Critical behavior of $(2+1)$-dimensional QED: $1/N_{f}$ corrections in the Landau gauge”, Phys. Rev. D, 94:5 (2016), 056009, 6 pp. ; Erratum, 99 (2019), 119901, 2 pp. ; A. Kotikov, S. Teber, “Critical behavior of ($2+1$)-dimensional QED: $1/N_{f}$ corrections in an arbitrary nonlocal gauge”, Phys. Rev. D, 94:11 (2016), 114011, 9 pp. ; Erratum, 99:5 (2019), 059902, 5 pp. ; “Critical behavior of $(2+1)$-dimensional QED: $1/N$ expansion”, Particles, 3:2 (2020), 345–354 | DOI | MR | DOI | MR | DOI | MR | DOI | DOI | DOI

[5] N. Karthik, R. Narayanan, “Numerical determination of monopole scaling dimension in parity-invariant three-dimensional noncompact QED”, Phys. Rev. D, 100:5 (2019), 054514, 10 pp. | DOI | MR

[6] N. Dorey, N. E. Mavromatos, “QED${}_3$ and two-dimensional superconductivity without parity violation”, Nucl. Phys. B, 386:3 (1992), 614–680 ; M. Franz, Z. Tešanović, “Algebraic Fermi liquid from phase fluctuations: ‘Topological’ fermions, vortex ‘berryons’ and QED$_3$ theory of cuprate superconductors”, Phys. Rev. Lett., 87:25 (2001), 257003, 4 pp. ; Erratum, 88:10 (2001), 109902, 1 pp. ; I. F. Herbut, “QED$_3$ theory of underdoped high-temperature superconductors”, Phys. Rev. B, 66:9 (2002), 094504, 19 pp. | DOI | DOI | DOI | DOI

[7] K. Farakos, N. E. Mavromatos, “Gauge-theory approach to planar doped antiferromagnets and external magnetic fields”, Internat. J. Modern Phys. B, 12:7–8 (1998), 809–836 | DOI

[8] G. W. Semenoff, “Condensed-matter simulation of a three-dimensional anomaly”, Phys. Rev. Lett., 53:26 (1984), 2449–2452 | DOI

[9] V. P. Gusynin, S. G. Sharapov, J. P. Carbotte, “AC conductivity of graphene: from tight-binding model to $2+1$-dimensional quantum electrodynamics”, Internat. J. Modern Phys. B, 21:27 (2007), 4611–4658 ; A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, “The electronic properties of graphene”, Rev. Mod. Phys., 81:1 (2009), 109–162 ; V. N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea, A. H. C. Neto, “Electron-electron interactions in graphene: Current status and perspectives”, Rev. Mod. Phys., 84:3 (2012), 1067–1125 ; S. Teber, Field theoretic study of electron-electron interaction effects in Dirac liquids, arXiv: 1810.08428 | DOI | DOI | DOI

[10] L. D. Landau, I. M. Khalatnikov, “Gradientnye preobrazovaniya funktsii Grina zaryazhennykh chastits”, ZhETF, 29:6 (1955), 89–93

[11] K. Johnson, B. Zumino, “Gauge dependence of the wave-function renormalization constant in quantum electrodynamics”, Phys. Rev. Lett., 3:7 (1959), 351–352 ; B. Zumino, “Gauge properties of propagators in quantum electrodynamics”, J. Math. Phys., 1:1 (1960), 1–7 ; S. Okubo, “The gauge properties of Green's functions in quantum electrodynamics”, Nuovo Cim., 15 (1960), 949–958 ; I. Bialynicki-Birula, “On the gauge properties of Green's functions”, Nuovo Cim., 17 (1960), 951–955 ; H. Sonoda, “On the gauge parameter dependence of QED”, Phys. Lett. B, 499:3–4 (2001), 253–260 | DOI | DOI | MR | DOI | MR | DOI | MR | DOI | MR

[12] A. Bashir, A. Kizilersu, M. R. Pennington, “Does the weak coupling limit of the Burden–Tjiang deconstruction of the massless quenched three-dimensional QED vertex agree with perturbation theory?”, Phys. Rev. D, 62:8 (2000), 085002, 8 pp. ; A. Bashir, “Nonperturbative fermion propagator for the massless quenched QED3”, Phys. Lett. B, 491:3–4 (2000), 280–284 ; A. Bashir, A. Raya, “Landau–Khalatnikov–Fradkin transformations and the fermion propagator in quantum electrodynamics”, Phys. Rev. D, 66 (2002), 105005, 8 pp. | DOI | DOI | DOI

[13] A. Bashir, A. Raya, “Gauge covariance and the chiral condenate in QED3”, Braz. J. Phys., 37:1B (2007), 313–319 | DOI

[14] V. P. Gusynin, A. V. Kotikov, S. Teber, “Landau–Khalatnikov–Fradkin transformation in three-dimensional quenched QED”, Phys. Rev. D, 102:2 (2020), 025013, 18 pp. | DOI | MR

[15] E. Marinari, G. Parisi, C. Rebbi, “Monte Carlo simulation of the massive Schwinger model”, Nucl. Phys. B, 190:4 (1981), 734–750 | DOI

[16] D. Hatton, C. T. H. Davies, B. Galloway, J. Koponen, G. P. Lepage, A. T. Lytle [HPQCD Collab.], “Charmonium properties from lattice QCD+QED: Hyperfine splitting, $J/\psi$ leptonic width, charm quark mass, and $a^c_\mu$”, Phys. Rev. D, 102:5 (2020), 054511, 32 pp. | DOI

[17] P. I. Fomin, V. P. Gusynin, V. A. Miransky, Yu. A. Sitenko, “Dynamical symmetry breaking and particle mass generation in gauge field theories”, Riv. Nuovo Cim., 6:5 (1983), 1–90 ; V. A. Miransky, Dynamical Symmetry Breaking in Quantum Field Theory, World Sci., Singapore, 1994 | DOI | DOI | MR

[18] C. N. Leung, S. T. Love, W. A. Bardeen, “Spontaneous symmetry breaking in scale invariant quantum electrodynamics”, Nucl. Phys. B, 273:3–4 (1986), 649–662 ; W. A. Bardeen, C. N. Leung, S. T. Love, “Aspects of dynamical symmetry breaking in gauge field theories”, 323:3 (1989), 493–512 ; B. Holdom, “Continuum limit of quenched theories”, Phys. Rev. Lett., 62:9 (1989), 997–1000 ; U. Mahanta, “Critical behavior in quenched qed to all orders in the coupling”, Phys. Lett. B, 225:1–2 (1989), 181–185 | DOI | DOI | DOI | DOI

[19] V. P. Gusynin, A. W. Schreiber, T. Sizer, A. G. Williams, “Chiral symmetry breaking in dimensionally regularized nonperturbative quenched QED”, Phys. Rev. D, 60:6 (1999), 065007, 12 pp. | DOI

[20] A. V. Kotikov, S. Teber, “Landau–Khalatnikov–Fradkin transformation and the mystery of even $\zeta$-values in Euclidean massless correlators”, Phys. Rev. D, 100:10 (2019), 105017, 10 pp. ; “Landau–Khalatnikov–Fradkin transformation and hatted $\zeta$-values”, Phys. Part. Nucl., 51:4 (2020), 562–566 ; А. В. Котиков, С. Тебер, “Преобразование Ландау–Халатникова–Фрадкина и четные $\zeta$-функции”, ЯФ, 84:1 (2021), 90–92 | DOI | MR | DOI | DOI

[21] A. James, A. V. Kotikov, S. Teber, “Landau–Khalatnikov–Fradkin transformation of the fermion propagator in massless reduced QED”, Phys. Rev. D, 101:4 (2020), 045011, 12 pp. | DOI | MR

[22] R. Jackiw, S. Templeton, “How super-renormalizable interactions cure their infrared divergences”, Phys. Rev. D, 23:10 (1981), 2291–2304 ; O. M. Del Cima, D. H. T. Franco, O. Piguet, “Ultraviolet and infrared perturbative finiteness of massless QED$_3$”, Phys. Rev. D, 89:6 (2014), 065001, 4 pp. | DOI | DOI

[23] N. Karthik, R. Narayanan, “Flavor and topological current correlators in parity-invariant three-dimensional QED”, Phys. Rev. D, 96:5 (2017), 054509, 10 pp. | DOI

[24] A. F. Pikelner, V. P. Gusynin, A. V. Kotikov, S. Teber, “Four-loop singularities of the massless fermion propagator in quenched three-dimensional QED”, Phys. Rev. D, 102:10 (2020), 105012, 9 pp. | DOI | MR

[25] A. V. Kotikov, S. Teber, “Two-loop fermion self-energy in reduced quantum electrodynamics and application to the ultrarelativistic limit of graphene”, Phys. Rev. D, 89:6 (2014), 065038, 24 pp. | DOI

[26] B. Ruijl, T. Ueda, J. A. M. Vermaseren, A. Vogt, “Four-loop QCD propagators and vertices with one vanishing external momentum”, JHEP, 06 (2017), 040, 49 pp. | DOI | MR

[27] B. Ruijl, T. Ueda, J. A. M. Vermaseren, “Forcer, a FORM program for the parametric reduction of four-loop massless propagator diagrams”, Comput. Phys. Commun., 253 (2020), 107198, 23 pp. | DOI | MR

[28] R. N. Lee, “DRA method: Powerful tool for the calculation of the loop integrals”, J. Phys.: Conf. Ser., 368 (2012), 012050, 7 pp. | DOI

[29] H. R. P. Ferguson, D. H. Bailey, S. Arno, “Analysis of PSLQ, an integer relation finding algorithm”, Math. Comput., 68:225 (1999), 351–369 | DOI | MR

[30] R. N. Lee, A. V. Smirnov, V. A. Smirnov, “Master integrals for four-loop massless propagators up to transcendentality weight twelve”, Nucl. Phys. B, 856:1 (2012), 95–110 | DOI | MR

[31] R. N. Lee, K. T. Mingulov, “Introducing SummerTime: a package for high-precision computation of sums appearing in DRA method”, Comput. Phys. Commun., 203 (2016), 255–267 | DOI

[32] V. Magerya, A. Pikelner, “Cutting massless four-loop propagators”, JHEP, 12 (2019), 026, 57 pp. | DOI | MR

[33] A. V. Kotikov, “The Gegenbauer polynomial technique: the evaluation of a class of Feynman diagrams”, Phys. Lett. B, 375:1–4 (1996), 240–248 | DOI | MR

[34] S. Laporta, “Building bases for analytical fits of four-loop QED master integrals”, PoS (LL2018), 303 (2018), 073, 9 pp. | DOI