On the~Landau--Khalatnikov--Fradkin transformation in quenched $\mathrm{QED}_3$
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 3, pp. 548-558
Voir la notice de l'article provenant de la source Math-Net.Ru
We present the results of studies of the gauge covariance of the massless fermion propagator in three-dimensional quenched quantum electrodynamics in the framework of dimensional regularization in $d=3-2\varepsilon$. Assuming the finiteness of the perturbative expansion, i.e., the existence of the limit $\varepsilon\to 0$, we show that exactly for $d=3$ all odd perturbative coefficients starting from the third order must be equal to zero in any gauge. To test this, we calculate three- and four-loop corrections to the massless fermion propagator. Three-loop corrections are finite and gauge invariant, while four-loop corrections have singularities. The terms depending on the gauge parameter are completely determined by the lower orders in accordance with the Landau–Khalatnikov–Fradkin transformation.
Keywords:
quantum electrodynamics, gauge dependence
Mots-clés : fermion propagator, multiloop calculations.
Mots-clés : fermion propagator, multiloop calculations.
@article{TMF_2023_216_3_a12,
author = {A. V. Kotikov},
title = {On {the~Landau--Khalatnikov--Fradkin} transformation in quenched $\mathrm{QED}_3$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {548--558},
publisher = {mathdoc},
volume = {216},
number = {3},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a12/}
}
TY - JOUR
AU - A. V. Kotikov
TI - On the~Landau--Khalatnikov--Fradkin transformation in quenched $\mathrm{QED}_3$
JO - Teoretičeskaâ i matematičeskaâ fizika
PY - 2023
SP - 548
EP - 558
VL - 216
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a12/
LA - ru
ID - TMF_2023_216_3_a12
ER -
A. V. Kotikov. On the~Landau--Khalatnikov--Fradkin transformation in quenched $\mathrm{QED}_3$. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 3, pp. 548-558. http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a12/