Mots-clés : convergent perturbation theory.
@article{TMF_2023_216_3_a11,
author = {M. V. Komarova and M. Yu. Nalimov},
title = {Convergent perturbation theory and the strong coupling limit in quantum electrodynamics},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {532--547},
year = {2023},
volume = {216},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a11/}
}
TY - JOUR AU - M. V. Komarova AU - M. Yu. Nalimov TI - Convergent perturbation theory and the strong coupling limit in quantum electrodynamics JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 532 EP - 547 VL - 216 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a11/ LA - ru ID - TMF_2023_216_3_a11 ER -
%0 Journal Article %A M. V. Komarova %A M. Yu. Nalimov %T Convergent perturbation theory and the strong coupling limit in quantum electrodynamics %J Teoretičeskaâ i matematičeskaâ fizika %D 2023 %P 532-547 %V 216 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a11/ %G ru %F TMF_2023_216_3_a11
M. V. Komarova; M. Yu. Nalimov. Convergent perturbation theory and the strong coupling limit in quantum electrodynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 3, pp. 532-547. http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a11/
[1] L. N. Lipatov, “Raskhodimost ryada teorii vozmuschenii i kvaziklassika”, ZhETF, 72:2 (1977), 411–427 | MR
[2] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, International Series of Monographs on Physics, 113, Oxford Univ. Press, Oxford, 2002 | DOI | MR | Zbl
[3] L. D. Landau, A. A. Abrikosov, I. M. Khalatnikov, “Ob ustranenii beskonechnostei v kvantovoi elektrodinamike”, Dokl. AN SSSR, 95:4 (1954), 497–500 ; “Асимптотическое выражение для гриновской функции электрона в квантовой электродинамике”, 773–776 ; “Асимптотическое выражение для гриновской функции фотона в квантовой электродинамике”, 95:6 (1954), 1177–1180 | MR | Zbl | MR | MR
[4] D. J. E. Callaway, “Triviality pursuit: Can elementary scalar particles exist?”, Phys. Rep., 167:5 (1988), 241–320 ; D. J. E. Callaway, R. Petronzio, “CAN elementary scalar particles exist?: (II). Scalar electrodynamics”, Nucl. Phys. B, 277:1 (1986), 50–66 ; M. Göckeler, R. Horsley, V. Linke, P. Rakow, G. Schierholz, H. Stüben, “Is there a Landau Pole Problem in QED?”, Phys. Rev. Let., 80:19 (1998), 4119–4122 ; S. Kim, J. B. Kogut, M. P. Lombardo, “Gauged Nambu–Jona–Lasinio studies of the triviality of quantum electrodynamics”, Phys. Rev. D, 65:5 (2002), 054015, 12 pp. | DOI | DOI | DOI | DOI
[5] A. G. Ushveridze, “Skhodyaschayasya teoriya vozmuschenii dlya teorii polya”, YaF, 38:3(9) (1983), 798–809
[6] M. Yu. Nalimov, A. V. Ovsyannikov, “Skhodyaschayasya teoriya vozmuschenii dlya issledovaniya fazovykh perekhodov”, TMF, 204:2 (2020), 226–241 | DOI | DOI
[7] I. M. Suslov, “Tochnaya asimptotika dlya $\beta$-funktsii v kvantovoi elektrodinamike”, ZhETF, 135:6 (2009), 1129–1133 | DOI
[8] D. I. Kazakov, O. V. Tarasov, D. V. Shirkov, “Analiticheskoe prodolzhenie rezultatov teorii vozmuschenii modeli $g\varphi^4$ v oblast $g\gtrsim 1$”, TMF, 38:1 (1979), 15–25 ; Ю. А. Кубышин, “Суммирование рядов теории возмущений по Зоммерфельду–Ватсону”, ТМФ, 58:1 (1984), 137–145 ; “Поправки к асимптотической формуле для высоких порядков теории возмущений”, 57:3 (1983), 363–372 | DOI | MR | DOI | MR | DOI | MR
[9] A. N. Sissakian, I. L. Solovtsov, O. P. Solovtsova, “$\beta$-Function for the $\phi^4$-model in variational perturbation theory”, Phys. Lett. B, 321:3 (1994), 381–384 | DOI
[10] I. M. Suslov, “Renormgruppovye funktsii teorii $\varphi^4$ v predele silnoi svyazi: analiticheskie rezultaty”, ZhETF, 134:3 (2008), 490–508 ; “Асимптотика $\beta$-функции в теории $\varphi^4$: схема без комплексных параметров”, 111:3 (2010), 450–465 | DOI | DOI
[11] D. I. Kazakov, D. V. Shirkov, “Asymptotic series of quantum field theory and their summation”, Fortschr. Phys., 28:8–9 (1980), 465–499 | DOI | MR
[12] M. V. Kompaniets, “Prediction of the higher-order terms based on Borel resummation with conformal mapping”, J. Phys.: Conf. Ser., 762 (2016), 012075, 6 pp. | DOI
[13] D. V. Batkovich, K. G. Chetyrkin, M. V. Kompaniets, “Six loop analytical calculation of the field anomalous dimension and the critical exponent $\eta$ in $O(n)$-symmetric $\varphi^4$ model”, Nucl. Phys. B, 906 (2016), 147–167 | DOI | MR
[14] M. V. Kompaniets, E. Panzer, “Minimally subtracted six-loop renormalization of $O(n)$-symmetric $\phi^4$ theory and critical exponents”, Phys. Rev. D, 96:3 (2017), 036016, 26 pp. | DOI | MR
[15] M. V. Kompaniets, K. J. Wiese, “Fractal dimension of critical curves in the $O(n)$-symmetric $\phi^4$ model and crossover exponent at 6-loop order: loop-erased random walks, self-avoiding walks, Ising, $XY$, and Heisenberg models”, Phys. Rev. E, 101:1 (2020), 012104, 17 pp. | DOI | MR
[16] M. Borinsky, J. A. Gracey, M. V. Kompaniets, O. Schnetz, “Five-loop renormalization of $\phi^3$ theory with applications to the Lee–Yang edge singularity and percolation theory”, Phys. Rev. D, 103:11 (2021), 116024, 35 pp. | DOI | MR
[17] J. Honkonen, M. Nalimov, “Convergent expansion for critical exponents in the $O(n)$-symmetric $\varphi^4$ model for large $\epsilon$”, Phys. Lett. B, 459:4 (1999), 582–588 ; J. Honkonen, M. Komarova, M. Nalimov, “Large order asymptotics and convergent perturbation theory for critical indexes of $\phi^4$ model in $4-\epsilon$ expansion”, Acta Phys. Slov., 52:4 (2002), 303–310 | DOI
[18] V. K. Sazonov, “Convergent perturbation theory for lattice models with fermions”, Internat. J. Modern Phys. A, 31:13 (2016), 1650072, 9 pp. | DOI | Zbl
[19] A. A. Slavnov, L. D. Faddeev, Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1988 | MR
[20] C. Itzykson, G. Parisi, J.-B. Zuber, “Asymptotic estimates in quantum electrodynamics”, Phys. Rev. D, 16:4 (1977), 996–1013 ; R. Balian, C. Itzykson, J.-B. Zuber, “Asymptotic estimates in quantum electrodynamics. II”, 17:4 (1978), 1041–1052 | DOI | DOI
[21] E. B. Bogomolnyi, Yu. A. Kubyshin, “Asimptoticheskie otsenki dlya diagramm s fiksirovannym chislom fermionnykh petel v kvantovoi elektrodinamike. I. Vybor formy perevalnykh reshenii”, YaF, 34:6 (1981), 1535–1546 ; “Асимптотические оценки для диаграмм с фиксированным числом фермионных петель в квантовой электродинамике. II. Перевальные конфигурации с $O(2)\times O(3)$ группой симметрии”, 35:1 (1982), 202–212 | MR | MR
[22] P. A. Baikov, K. G. Chetyrkin, J. H. Kuhn, J. Rittinger, “Vector correlator in massless QCD at order $\mathcal{O}(\alpha_s^4)$ and the QED $\beta$-function at five loop”, JHEP, 12 (2012), 017, 14 pp., arXiv: 1206.1284 | DOI
[23] A. L. Kataev, S. A. Larin, “Analytical five-loop expressions for the renormalization group QED $\beta$-function in different renormalization schemes”, Pisma v ZhETF, 96:1 (2012), 61–65 | DOI
[24] K. G. Chetyrkin, G. Falcioni, F. Herzog, J. A. M. Vermaseren, “Five-loop renormalisation of QCD in covariant gauges”, JHEP, 10 (2017), 179, 17 pp. | DOI | MR