Convergent perturbation theory and the strong coupling limit in quantum electrodynamics
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 3, pp. 532-547 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The well-known formalism for constructing a convergent quantum field perturbation theory with a finite radius of convergence is modified to obtain convergent series in quantum electrodynamics. We prove that the constructed series converge and determine the radius of convergence. The convergent quantum field perturbation theory is used to study the strong-coupling limit in quantum electrodynamics and in the $\varphi^4$ model of critical behavior. We obtain strong-coupling limits for the $\beta$-functions of the theories under study and confirm that the Landau pole in quantum electrodynamics does exist and is not an artifact of perturbation theory.
Keywords: quantum field perturbation theory, renormalization group, $\beta$-function, strong-coupling limit, QED, quantum electrodynamics
Mots-clés : convergent perturbation theory.
@article{TMF_2023_216_3_a11,
     author = {M. V. Komarova and M. Yu. Nalimov},
     title = {Convergent perturbation theory and the strong coupling limit in quantum electrodynamics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {532--547},
     year = {2023},
     volume = {216},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a11/}
}
TY  - JOUR
AU  - M. V. Komarova
AU  - M. Yu. Nalimov
TI  - Convergent perturbation theory and the strong coupling limit in quantum electrodynamics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 532
EP  - 547
VL  - 216
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a11/
LA  - ru
ID  - TMF_2023_216_3_a11
ER  - 
%0 Journal Article
%A M. V. Komarova
%A M. Yu. Nalimov
%T Convergent perturbation theory and the strong coupling limit in quantum electrodynamics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 532-547
%V 216
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a11/
%G ru
%F TMF_2023_216_3_a11
M. V. Komarova; M. Yu. Nalimov. Convergent perturbation theory and the strong coupling limit in quantum electrodynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 3, pp. 532-547. http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a11/

[1] L. N. Lipatov, “Raskhodimost ryada teorii vozmuschenii i kvaziklassika”, ZhETF, 72:2 (1977), 411–427 | MR

[2] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, International Series of Monographs on Physics, 113, Oxford Univ. Press, Oxford, 2002 | DOI | MR | Zbl

[3] L. D. Landau, A. A. Abrikosov, I. M. Khalatnikov, “Ob ustranenii beskonechnostei v kvantovoi elektrodinamike”, Dokl. AN SSSR, 95:4 (1954), 497–500 ; “Асимптотическое выражение для гриновской функции электрона в квантовой электродинамике”, 773–776 ; “Асимптотическое выражение для гриновской функции фотона в квантовой электродинамике”, 95:6 (1954), 1177–1180 | MR | Zbl | MR | MR

[4] D. J. E. Callaway, “Triviality pursuit: Can elementary scalar particles exist?”, Phys. Rep., 167:5 (1988), 241–320 ; D. J. E. Callaway, R. Petronzio, “CAN elementary scalar particles exist?: (II). Scalar electrodynamics”, Nucl. Phys. B, 277:1 (1986), 50–66 ; M. Göckeler, R. Horsley, V. Linke, P. Rakow, G. Schierholz, H. Stüben, “Is there a Landau Pole Problem in QED?”, Phys. Rev. Let., 80:19 (1998), 4119–4122 ; S. Kim, J. B. Kogut, M. P. Lombardo, “Gauged Nambu–Jona–Lasinio studies of the triviality of quantum electrodynamics”, Phys. Rev. D, 65:5 (2002), 054015, 12 pp. | DOI | DOI | DOI | DOI

[5] A. G. Ushveridze, “Skhodyaschayasya teoriya vozmuschenii dlya teorii polya”, YaF, 38:3(9) (1983), 798–809

[6] M. Yu. Nalimov, A. V. Ovsyannikov, “Skhodyaschayasya teoriya vozmuschenii dlya issledovaniya fazovykh perekhodov”, TMF, 204:2 (2020), 226–241 | DOI | DOI

[7] I. M. Suslov, “Tochnaya asimptotika dlya $\beta$-funktsii v kvantovoi elektrodinamike”, ZhETF, 135:6 (2009), 1129–1133 | DOI

[8] D. I. Kazakov, O. V. Tarasov, D. V. Shirkov, “Analiticheskoe prodolzhenie rezultatov teorii vozmuschenii modeli $g\varphi^4$ v oblast $g\gtrsim 1$”, TMF, 38:1 (1979), 15–25 ; Ю. А. Кубышин, “Суммирование рядов теории возмущений по Зоммерфельду–Ватсону”, ТМФ, 58:1 (1984), 137–145 ; “Поправки к асимптотической формуле для высоких порядков теории возмущений”, 57:3 (1983), 363–372 | DOI | MR | DOI | MR | DOI | MR

[9] A. N. Sissakian, I. L. Solovtsov, O. P. Solovtsova, “$\beta$-Function for the $\phi^4$-model in variational perturbation theory”, Phys. Lett. B, 321:3 (1994), 381–384 | DOI

[10] I. M. Suslov, “Renormgruppovye funktsii teorii $\varphi^4$ v predele silnoi svyazi: analiticheskie rezultaty”, ZhETF, 134:3 (2008), 490–508 ; “Асимптотика $\beta$-функции в теории $\varphi^4$: схема без комплексных параметров”, 111:3 (2010), 450–465 | DOI | DOI

[11] D. I. Kazakov, D. V. Shirkov, “Asymptotic series of quantum field theory and their summation”, Fortschr. Phys., 28:8–9 (1980), 465–499 | DOI | MR

[12] M. V. Kompaniets, “Prediction of the higher-order terms based on Borel resummation with conformal mapping”, J. Phys.: Conf. Ser., 762 (2016), 012075, 6 pp. | DOI

[13] D. V. Batkovich, K. G. Chetyrkin, M. V. Kompaniets, “Six loop analytical calculation of the field anomalous dimension and the critical exponent $\eta$ in $O(n)$-symmetric $\varphi^4$ model”, Nucl. Phys. B, 906 (2016), 147–167 | DOI | MR

[14] M. V. Kompaniets, E. Panzer, “Minimally subtracted six-loop renormalization of $O(n)$-symmetric $\phi^4$ theory and critical exponents”, Phys. Rev. D, 96:3 (2017), 036016, 26 pp. | DOI | MR

[15] M. V. Kompaniets, K. J. Wiese, “Fractal dimension of critical curves in the $O(n)$-symmetric $\phi^4$ model and crossover exponent at 6-loop order: loop-erased random walks, self-avoiding walks, Ising, $XY$, and Heisenberg models”, Phys. Rev. E, 101:1 (2020), 012104, 17 pp. | DOI | MR

[16] M. Borinsky, J. A. Gracey, M. V. Kompaniets, O. Schnetz, “Five-loop renormalization of $\phi^3$ theory with applications to the Lee–Yang edge singularity and percolation theory”, Phys. Rev. D, 103:11 (2021), 116024, 35 pp. | DOI | MR

[17] J. Honkonen, M. Nalimov, “Convergent expansion for critical exponents in the $O(n)$-symmetric $\varphi^4$ model for large $\epsilon$”, Phys. Lett. B, 459:4 (1999), 582–588 ; J. Honkonen, M. Komarova, M. Nalimov, “Large order asymptotics and convergent perturbation theory for critical indexes of $\phi^4$ model in $4-\epsilon$ expansion”, Acta Phys. Slov., 52:4 (2002), 303–310 | DOI

[18] V. K. Sazonov, “Convergent perturbation theory for lattice models with fermions”, Internat. J. Modern Phys. A, 31:13 (2016), 1650072, 9 pp. | DOI | Zbl

[19] A. A. Slavnov, L. D. Faddeev, Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1988 | MR

[20] C. Itzykson, G. Parisi, J.-B. Zuber, “Asymptotic estimates in quantum electrodynamics”, Phys. Rev. D, 16:4 (1977), 996–1013 ; R. Balian, C. Itzykson, J.-B. Zuber, “Asymptotic estimates in quantum electrodynamics. II”, 17:4 (1978), 1041–1052 | DOI | DOI

[21] E. B. Bogomolnyi, Yu. A. Kubyshin, “Asimptoticheskie otsenki dlya diagramm s fiksirovannym chislom fermionnykh petel v kvantovoi elektrodinamike. I. Vybor formy perevalnykh reshenii”, YaF, 34:6 (1981), 1535–1546 ; “Асимптотические оценки для диаграмм с фиксированным числом фермионных петель в квантовой электродинамике. II. Перевальные конфигурации с $O(2)\times O(3)$ группой симметрии”, 35:1 (1982), 202–212 | MR | MR

[22] P. A. Baikov, K. G. Chetyrkin, J. H. Kuhn, J. Rittinger, “Vector correlator in massless QCD at order $\mathcal{O}(\alpha_s^4)$ and the QED $\beta$-function at five loop”, JHEP, 12 (2012), 017, 14 pp., arXiv: 1206.1284 | DOI

[23] A. L. Kataev, S. A. Larin, “Analytical five-loop expressions for the renormalization group QED $\beta$-function in different renormalization schemes”, Pisma v ZhETF, 96:1 (2012), 61–65 | DOI

[24] K. G. Chetyrkin, G. Falcioni, F. Herzog, J. A. M. Vermaseren, “Five-loop renormalisation of QCD in covariant gauges”, JHEP, 10 (2017), 179, 17 pp. | DOI | MR