Composite operators of stochastic model A
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 3, pp. 519-531 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By means of the field-theoretic renormalization group, we study the damping of the viscosity coefficient near the superfluid phase transition. We use the fact that in the infrared region, the complex model used to describe the phase transition belongs to the same universality class as the well-known stochastic model A. This allows us to determine the critical behavior of viscosity using composite operators for model A. Our analysis is based on the $\varepsilon$-expansion near the upper critical dimension $d_{\mathrm c} =4$ of model A. The critical exponent of viscosity is then calculated from the critical dimensions of composite operators of massless two-component model A. In particular, we present results for critical dimensions of a selected class of composite operators with the canonical dimension $8$ to the leading order.
Keywords: superfluidity, viscosity, renormalization group, composite operators, critical dimension, critical point
Mots-clés : phase transition.
@article{TMF_2023_216_3_a10,
     author = {D. Davletbaeva and M. Hnati\v{c} and M. V. Komarova and T. Lu\v{c}ivjansk\'y and L. Mi\v{z}i\v{s}in and M. Yu. Nalimov},
     title = {Composite operators of stochastic {model~A}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {519--531},
     year = {2023},
     volume = {216},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a10/}
}
TY  - JOUR
AU  - D. Davletbaeva
AU  - M. Hnatič
AU  - M. V. Komarova
AU  - T. Lučivjanský
AU  - L. Mižišin
AU  - M. Yu. Nalimov
TI  - Composite operators of stochastic model A
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 519
EP  - 531
VL  - 216
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a10/
LA  - ru
ID  - TMF_2023_216_3_a10
ER  - 
%0 Journal Article
%A D. Davletbaeva
%A M. Hnatič
%A M. V. Komarova
%A T. Lučivjanský
%A L. Mižišin
%A M. Yu. Nalimov
%T Composite operators of stochastic model A
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 519-531
%V 216
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a10/
%G ru
%F TMF_2023_216_3_a10
D. Davletbaeva; M. Hnatič; M. V. Komarova; T. Lučivjanský; L. Mižišin; M. Yu. Nalimov. Composite operators of stochastic model A. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 3, pp. 519-531. http://geodesic.mathdoc.fr/item/TMF_2023_216_3_a10/

[1] A. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, Izd-vo PIYaF, SPb., 1988 | DOI | MR

[2] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Clarendon Press, New York, 2002 | DOI | MR

[3] U. Täuber, Critical Dynamics: A Field Theory Approach to Equilibrium and Non-Equilibrium Scaling Behavior, Cambridge Univ. Press, New York, 2014 | DOI

[4] P. C. Hohenberg, B. I. Halperin, “Theory of dynamic critical phenomena”, Rev. Mod. Phys., 49:3 (1977), 435–479 | DOI

[5] R. Folk, G. Moser, “Critical dynamics: a field-theoretical approach”, J. Phys. A: Math. Gen., 39:24 (2006), R207–R313 | DOI | MR

[6] C. De Dominicis, L. Peliti, “Field-theory renormalization and critical dynamics above $T_{c}$: helium, antiferromagnets, and liquid-gas systems”, Phys. Rev. B, 18:1 (1978), 353–376 | DOI

[7] M. Gnatich, M. V. Komarova, M. Yu. Nalimov, “Mikroskopicheskoe obosnovanie stokhasticheskoi F-modeli kriticheskoi dinamiki”, TMF, 175:3 (2013), 398–407 | DOI | DOI | MR | Zbl

[8] M. Dančo, M. Hnatič, M. V. Komarova, T. Lučivjanský, M. Yu. Nalimov, “Superfluid phase transition with activated velocity fluctuations: renormalization group approach”, Phys. Rev. E, 93:1 (2016), 012109, 13 pp. | MR

[9] Yu. A. Zhavoronkov, M. V. Komarova, Yu. G. Molotkov, M. Yu. Nalimov, Yu. Khonkonen, “Kriticheskaya dinamika fazovogo perekhoda v sverkhtekuchee sostoyanie”, TMF, 200:2 (2019), 361–377 | DOI | DOI | MR

[10] J. Honkonen, M. V. Komarova, Yu. G. Molotkov, M. Yu. Nalimov, “Effective large-scale model of boson gas from microscopic theory”, Nucl. Phys. B., 939 (2019), 105–129 | DOI

[11] J. Honkonen, M. Komarova, Yu. Molotkov, M. Nalimov, A. Trenogin, “Critical dynamics of the superfluid phase transition: Multiloop calculation of the microscopic model”, Phys. Rev. E, 106:1 (2022), 014126, 13 pp. | DOI

[12] D. J. Amit, V. Martín-Mayor, Field Theory, the Renormalization Group, and Critical Phenomena, World Sci., Singapore, 2005 | DOI | MR