Mots-clés : soliton solutions.
@article{TMF_2023_216_2_a9,
author = {Hui Mao and Yu Qian and Yuanyuan Miao},
title = {Solving the~modified {Camassa{\textendash}Holm} equation via the~inverse scattering transform},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {326--349},
year = {2023},
volume = {216},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a9/}
}
TY - JOUR AU - Hui Mao AU - Yu Qian AU - Yuanyuan Miao TI - Solving the modified Camassa–Holm equation via the inverse scattering transform JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 326 EP - 349 VL - 216 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a9/ LA - ru ID - TMF_2023_216_2_a9 ER -
Hui Mao; Yu Qian; Yuanyuan Miao. Solving the modified Camassa–Holm equation via the inverse scattering transform. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 326-349. http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a9/
[1] B. Fuchssteiner, A. S. Fokas, “Sympectic structures, their Bäcklund transformations and hereditary symmetries”, Phys. D, 4:1 (1981), 47–66 | DOI | MR
[2] A. S. Fokas, “The Korteweg–de Vries equation and beyond”, Acta Appl. Math., 39:1–3 (1995), 295–305 | DOI | MR
[3] B. Fuchssteiner, “Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa–Holm equation”, Phys. D, 95:3–4 (1996), 229–243 | DOI | MR
[4] P. J. Olver, P. Rosenau, “Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support”, Phys. Rev. E, 53:2 (1996), 1900–1906 | DOI | MR
[5] A. S. Fokas, “On a class of physically important integrable equations”, Phys. D, 87:1–4 (1995), 145–150 | DOI | MR
[6] Z. J. Qiao, “A new integrable equation with cuspons and W/M-shape-peaks solitons”, J. Math. Phys., 47:11 (2006), 112701, 9 pp. | DOI | MR
[7] J. Schiff, “Zero curvature formulations of dual hierarchies”, J. Math. Phys., 37:4 (1996), 1928–1938 | DOI | MR
[8] G. L. Gui, Y. Liu, P. J. Olver, C. Z. Qu, “Wave-breaking and for a modified Camassa–Holm equation”, Commun. Math. Phys., 319:3 (2013), 731–759 | DOI | MR
[9] R. Ivanov, T. Lyons, “Dark solitons of Qiao's hierarchy”, J. Math. Phys., 53:12 (2012), 123701, 8 pp. | DOI | MR
[10] Y. Matsuno, “Bäcklund transformation and smooth multisoliton solutions for a modified Camassa–Holm equation with cubic nonlinearity”, J. Math. Phys., 54:5 (2013), 051504, 14 pp. | DOI | MR
[11] Y. Matsuno, “Smooth and singular multisoliton solutions of a modified Camassa–Holm equation with cubic nonlinearity and linear dispersion”, J. Phys. A: Math. Theor., 47:12 (2014), 125203, 25 pp. | DOI | MR
[12] G. H. Wang, Q. P. Liu, H. Mao, “The modified Camassa–Holm equation: Bäcklund transformations and nonlinear superposition formulae”, J. Phys. A: Math. Theor., 53:29 (2020), 294003, 15 pp. | DOI | MR
[13] B. Q. Xia, R. G. Zhou, Z. J. Qiao, “Darboux transformation and multi-soliton solutions of the Camassa–Holm equation and modified Camassa–Holm equation”, J. Math. Phys., 57:10 (2016), 103502, 12 pp. | DOI | MR
[14] H. Mao, Y. H. Kuang, “Solitons for the modified Camassa–Holm equation and their interactions via dressing method”, Math. Phys. Anal. Geom., 24 (2021), 32, 17 pp. | DOI
[15] A. Boutet de Monvel, I. Karpenko, D. Shepelsky, “A Riemann–Hilbert approach to the modified Camassa–Holm equation with nonzero boundary conditions”, J. Math. Phys., 61:3 (2020), 031504, 24 pp. | DOI | MR
[16] Z. J. Qiao, “New integrable hierarchy, its parametic solutions, cuspons, one-peak solitons, and M/W-sharp peak solitons”, J. Math. Phys., 48:8 (2007), 082701, 20 pp. | DOI | MR
[17] G. Biondini, G. Kovačič, “Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions”, J. Math. Phys., 55:3 (2014), 031506, 22 pp. | DOI | MR
[18] F. Demontis, B. Prinari, C. van der Mee, F. Vitale, “The inverse scattering transform for the defocusing nonlinear Schrödinger equations with nonzero boundary conditions”, Stud. Appl. Math., 131:1 (2013), 1–40 | DOI | MR
[19] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | DOI | MR | MR