Solving the modified Camassa–Holm equation via the inverse scattering transform
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 326-349 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

With the aid of the reciprocal transformation and the associated equation, we study the inverse scattering transform with a matrix Riemann–Hilbert problem for the modified Camassa–Holm (mCH) equation with nonzero boundary conditions (NZBC) at infinity. In terms of a suitable uniformization variable, the direct and inverse scattering problems are presented for the associated modified Camassa–Holm (amCH) equation. By means of the reciprocal transformation and the reconstruction formula for the potential of the amCH equation, we present the $N$-soliton solution for the mCH equation with NZBC. As applications, various solutions including both bright and dark types, smooth soliton solutions, singular soliton solutions, and multi-valued singular soliton solutions of the mCH equation and their interactions are exhibited.
Keywords: modified Camassa–Holm equation, reciprocal transformation, inverse scattering transform
Mots-clés : soliton solutions.
@article{TMF_2023_216_2_a9,
     author = {Hui Mao and Yu Qian and Yuanyuan Miao},
     title = {Solving the~modified {Camassa{\textendash}Holm} equation via the~inverse scattering transform},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {326--349},
     year = {2023},
     volume = {216},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a9/}
}
TY  - JOUR
AU  - Hui Mao
AU  - Yu Qian
AU  - Yuanyuan Miao
TI  - Solving the modified Camassa–Holm equation via the inverse scattering transform
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 326
EP  - 349
VL  - 216
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a9/
LA  - ru
ID  - TMF_2023_216_2_a9
ER  - 
%0 Journal Article
%A Hui Mao
%A Yu Qian
%A Yuanyuan Miao
%T Solving the modified Camassa–Holm equation via the inverse scattering transform
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 326-349
%V 216
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a9/
%G ru
%F TMF_2023_216_2_a9
Hui Mao; Yu Qian; Yuanyuan Miao. Solving the modified Camassa–Holm equation via the inverse scattering transform. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 326-349. http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a9/

[1] B. Fuchssteiner, A. S. Fokas, “Sympectic structures, their Bäcklund transformations and hereditary symmetries”, Phys. D, 4:1 (1981), 47–66 | DOI | MR

[2] A. S. Fokas, “The Korteweg–de Vries equation and beyond”, Acta Appl. Math., 39:1–3 (1995), 295–305 | DOI | MR

[3] B. Fuchssteiner, “Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa–Holm equation”, Phys. D, 95:3–4 (1996), 229–243 | DOI | MR

[4] P. J. Olver, P. Rosenau, “Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support”, Phys. Rev. E, 53:2 (1996), 1900–1906 | DOI | MR

[5] A. S. Fokas, “On a class of physically important integrable equations”, Phys. D, 87:1–4 (1995), 145–150 | DOI | MR

[6] Z. J. Qiao, “A new integrable equation with cuspons and W/M-shape-peaks solitons”, J. Math. Phys., 47:11 (2006), 112701, 9 pp. | DOI | MR

[7] J. Schiff, “Zero curvature formulations of dual hierarchies”, J. Math. Phys., 37:4 (1996), 1928–1938 | DOI | MR

[8] G. L. Gui, Y. Liu, P. J. Olver, C. Z. Qu, “Wave-breaking and for a modified Camassa–Holm equation”, Commun. Math. Phys., 319:3 (2013), 731–759 | DOI | MR

[9] R. Ivanov, T. Lyons, “Dark solitons of Qiao's hierarchy”, J. Math. Phys., 53:12 (2012), 123701, 8 pp. | DOI | MR

[10] Y. Matsuno, “Bäcklund transformation and smooth multisoliton solutions for a modified Camassa–Holm equation with cubic nonlinearity”, J. Math. Phys., 54:5 (2013), 051504, 14 pp. | DOI | MR

[11] Y. Matsuno, “Smooth and singular multisoliton solutions of a modified Camassa–Holm equation with cubic nonlinearity and linear dispersion”, J. Phys. A: Math. Theor., 47:12 (2014), 125203, 25 pp. | DOI | MR

[12] G. H. Wang, Q. P. Liu, H. Mao, “The modified Camassa–Holm equation: Bäcklund transformations and nonlinear superposition formulae”, J. Phys. A: Math. Theor., 53:29 (2020), 294003, 15 pp. | DOI | MR

[13] B. Q. Xia, R. G. Zhou, Z. J. Qiao, “Darboux transformation and multi-soliton solutions of the Camassa–Holm equation and modified Camassa–Holm equation”, J. Math. Phys., 57:10 (2016), 103502, 12 pp. | DOI | MR

[14] H. Mao, Y. H. Kuang, “Solitons for the modified Camassa–Holm equation and their interactions via dressing method”, Math. Phys. Anal. Geom., 24 (2021), 32, 17 pp. | DOI

[15] A. Boutet de Monvel, I. Karpenko, D. Shepelsky, “A Riemann–Hilbert approach to the modified Camassa–Holm equation with nonzero boundary conditions”, J. Math. Phys., 61:3 (2020), 031504, 24 pp. | DOI | MR

[16] Z. J. Qiao, “New integrable hierarchy, its parametic solutions, cuspons, one-peak solitons, and M/W-sharp peak solitons”, J. Math. Phys., 48:8 (2007), 082701, 20 pp. | DOI | MR

[17] G. Biondini, G. Kovačič, “Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions”, J. Math. Phys., 55:3 (2014), 031506, 22 pp. | DOI | MR

[18] F. Demontis, B. Prinari, C. van der Mee, F. Vitale, “The inverse scattering transform for the defocusing nonlinear Schrödinger equations with nonzero boundary conditions”, Stud. Appl. Math., 131:1 (2013), 1–40 | DOI | MR

[19] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | DOI | MR | MR