Construction of localized particular solutions of chains with three independent variables
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 291-301
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider differential–difference chains with three independent variables of the form $u^j_{n+1,x} = F(u^j_{n,x}, u^{j+1}_n, u^j_n, u^j_{n+1}, u^{j-1}_{n+1})$. An effective approach to the study and classification of equations with three independent variables is the method based on Darboux-integrable reductions. Using the Darboux-integrable reductions, we construct localized particular solutions of chains with three independent variables.
Keywords:
three-dimensional chains, characteristic algebras, Darboux integrability, characteristic integrals, integrable reductions.
@article{TMF_2023_216_2_a6,
author = {M. N. Kuznetsova},
title = {Construction of localized particular solutions of chains with three independent variables},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {291--301},
publisher = {mathdoc},
volume = {216},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a6/}
}
TY - JOUR AU - M. N. Kuznetsova TI - Construction of localized particular solutions of chains with three independent variables JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 291 EP - 301 VL - 216 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a6/ LA - ru ID - TMF_2023_216_2_a6 ER -
M. N. Kuznetsova. Construction of localized particular solutions of chains with three independent variables. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 291-301. http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a6/