Construction of localized particular solutions of chains with three independent variables
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 291-301

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider differential–difference chains with three independent variables of the form $u^j_{n+1,x} = F(u^j_{n,x}, u^{j+1}_n, u^j_n, u^j_{n+1}, u^{j-1}_{n+1})$. An effective approach to the study and classification of equations with three independent variables is the method based on Darboux-integrable reductions. Using the Darboux-integrable reductions, we construct localized particular solutions of chains with three independent variables.
Keywords: three-dimensional chains, characteristic algebras, Darboux integrability, characteristic integrals, integrable reductions.
@article{TMF_2023_216_2_a6,
     author = {M. N. Kuznetsova},
     title = {Construction of localized particular solutions of chains with three independent variables},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {291--301},
     publisher = {mathdoc},
     volume = {216},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a6/}
}
TY  - JOUR
AU  - M. N. Kuznetsova
TI  - Construction of localized particular solutions of chains with three independent variables
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 291
EP  - 301
VL  - 216
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a6/
LA  - ru
ID  - TMF_2023_216_2_a6
ER  - 
%0 Journal Article
%A M. N. Kuznetsova
%T Construction of localized particular solutions of chains with three independent variables
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 291-301
%V 216
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a6/
%G ru
%F TMF_2023_216_2_a6
M. N. Kuznetsova. Construction of localized particular solutions of chains with three independent variables. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 291-301. http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a6/