@article{TMF_2023_216_2_a5,
author = {A. S. Sorin and Yu. B. Chernyakov and G. I. Sharygin},
title = {Vector fields and invariants of the~full symmetric {Toda} system},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {271--290},
year = {2023},
volume = {216},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a5/}
}
TY - JOUR AU - A. S. Sorin AU - Yu. B. Chernyakov AU - G. I. Sharygin TI - Vector fields and invariants of the full symmetric Toda system JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 271 EP - 290 VL - 216 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a5/ LA - ru ID - TMF_2023_216_2_a5 ER -
A. S. Sorin; Yu. B. Chernyakov; G. I. Sharygin. Vector fields and invariants of the full symmetric Toda system. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 271-290. http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a5/
[1] Yu. B. Chernyakov, G. I. Sharygin, A. S. Sorin, “Bruhat order in full symmetric Toda system”, Commun. Math. Phys., 330:1 (2014), 367–399, arXiv: 1212.4803 | DOI
[2] A. S. Sorin, Yu. B. Chernyakov, G. I. Sharygin, “Fazovyi portret polnoi simmetrichnoi sistemy Tody na gruppakh ranga $2$”, TMF, 193:2 (2017), 193–213 | DOI | DOI
[3] Yu. B. Chernyakov, G. I. Sharygin, A. S. Sorin, “Bruhat order in the Toda system on $\mathfrak{so}(2,4)$: an example of non-split real form”, J. Geom. Phys., 136 (2019), 45–51, arXiv: 1712.0913 | DOI | MR
[4] H. Flaschka, “The Toda lattice. II. Existence of integrals”, Phys. Rev. B, 9:4 (1974), 1924–1925 | DOI | MR
[5] M. Toda, “Vibration of a chain with nonlinear interaction”, J. Phys. Soc. Japan, 22:2 (1967), 431–436 | DOI
[6] M. H'enon, “Integrals of the Toda lattice”, Phys. Rev. B, 9:4 (1974), 1921–1923 | DOI | MR
[7] H. Flaschka, “On the Toda lattice. II. Inverse-scattering solution”, Progr. Theoret. Phys., 51:3 (1974), 703–716 | DOI | MR
[8] S. V. Manakov, O polnoi integriruemosti i stokhastizatsii v diskretnykh dinamicheskikh sistemakh, ZhETF, 67:2 (1974), 543–555 | MR
[9] A. A. Arkhangelskii, “Vpolne integriruemye gamiltonovy sistemy na gruppe treugolnykh matrits”, Matem. sb., 108(150):1 (1979), 134–142 | DOI | MR | Zbl
[10] B. Kostant, “On Whittaker vectors and representation theory”, Invent. Math., 48:2 (1978), 101–184 | DOI | MR
[11] W. W. Symes, “Systems of Toda type, inverse spectral problems, and representation theory”, Invent. Math., 59:1 (1980), 13–51 | DOI | MR
[12] F. De Mari, M. Pedroni, “Toda flows and real Hessenberg manifolds”, J. Geom. Anal., 9:4 (1999), 607–625 | DOI | MR
[13] P. Deift, L. C. Li, T. Nanda, C. Tomei, “The Toda flow on a generic orbit is integrable”, Commun. Pure Appl. Math., 39:2 (1986), 183–232 | DOI
[14] A. S. Sorin, Yu. B. Chernyakov, “Novyi metod postroeniya poluinvariantov i integralov polnoi simmetrichnoi $\mathfrak{sl}_n$ reshetki Tody”, TMF, 183:2 (2015), 222–253 | DOI | DOI | MR
[15] B. Kostant, “The solution to a generalized Toda lattice and representation theory”, Adv. Math., 34:3 (1979), 195–338 | DOI | MR
[16] A. M. Perelomov, Integriruemye sistemy klassicheskoi mekhaniki i algebry Li, Nauka, M., 1990 | DOI
[17] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR
[18] Yu. B. Chernyakov, A. S. Sorin, “Explicit semi-invariants and integrals of the full symmetric $\mathfrak{sl}_n$ Toda lattice”, Lett. Math. Phys., 104:8 (2014), 1045–1052, arXiv: 1306.1647 | DOI | MR
[19] N. Reshetikhin, G. Schrader, “Superintegrability of generalized Toda models on symmetric spaces”, Int. Math. Res. Not., 2021:17 (2021), 12993–13010, arXiv: 1802.00356 | DOI
[20] Y. Kosmann-Schwarzbach, F. Magri, “Poisson–Nijenhuis structures”, Ann. Inst. H. Poincaré Phys. Théor., 53:1 (1990), 35–81
[21] A. I. Maltsev, “Kommutativnye podalgebry poluprostykh algebr Li”, Izv. AN SSSR. Ser. matem., 9:4 (1945), 291–300 | MR | Zbl