Vector fields and invariants of the~full symmetric Toda system
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 271-290
Voir la notice de l'article provenant de la source Math-Net.Ru
The geometric properties of the full symmetric Toda systems are studied. A simple geometric construction is described that allows constructing a commutative family of vector fields on a compact group including the Toda vector field, i.e., the field that generates the full symmetric Toda system associated with the Cartan decomposition of a semisimple Lie algebra. Our construction involves representations of a semisimple algebra and is independent of whether the Cartan pair is split. The result is closely related to the family of invariants and semiinvariants for the Toda system on $SL_n$.
Keywords:
full symmetric Toda system, commutative families of vector fields, Lie algebras representations.
@article{TMF_2023_216_2_a5,
author = {A. S. Sorin and Yu. B. Chernyakov and G. I. Sharygin},
title = {Vector fields and invariants of the~full symmetric {Toda} system},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {271--290},
publisher = {mathdoc},
volume = {216},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a5/}
}
TY - JOUR AU - A. S. Sorin AU - Yu. B. Chernyakov AU - G. I. Sharygin TI - Vector fields and invariants of the~full symmetric Toda system JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 271 EP - 290 VL - 216 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a5/ LA - ru ID - TMF_2023_216_2_a5 ER -
%0 Journal Article %A A. S. Sorin %A Yu. B. Chernyakov %A G. I. Sharygin %T Vector fields and invariants of the~full symmetric Toda system %J Teoretičeskaâ i matematičeskaâ fizika %D 2023 %P 271-290 %V 216 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a5/ %G ru %F TMF_2023_216_2_a5
A. S. Sorin; Yu. B. Chernyakov; G. I. Sharygin. Vector fields and invariants of the~full symmetric Toda system. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 271-290. http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a5/