@article{TMF_2023_216_2_a4,
author = {G. F. Helminck},
title = {Cauchy problems related to integrable matrix hierarchies},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {251--270},
year = {2023},
volume = {216},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a4/}
}
G. F. Helminck. Cauchy problems related to integrable matrix hierarchies. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 251-270. http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a4/
[1] G. F. Helminck, “Integrable deformations in the matrix pseudo differential operators”, J. Geom. Phys., 113 (2017), 104–116 | DOI | MR
[2] G. Wilson, “Commuting flows and conservation laws for Lax equations”, Math. Proc. Cambridge Philos. Soc., 86:1 (1979), 131–143 | DOI | MR
[3] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Operator approach to the Kadomtsev–Petviashvili equation. Transformation Groups for Soliton Equations III”, J. Phys. Soc. Japan, 50:11 (1981), 3806–3812 | DOI | MR
[4] G. F. Helminck, G. F. Post, “A convergent framework for the multicomponent KP-hierarchy”, Trans. Amer. Math. Soc., 324:1 (1991), 271–292 | DOI | MR
[5] M. Gerstenhaber, “On dominance and varieties of commuting matrices”, Ann. Math., 73:2 (1961), 324–348 | DOI | MR
[6] R. C. Courter, “The dimension of maximal commutative subalgebras of $K_n$”, Duke Math. J., 32:2 (1965), 225–232 | DOI | MR
[7] T. J. Laffey, “The minimal dimension of maximal commutative subalgebras of full matrix algebras”, Linear Algebra Appl., 71 (1985), 199–212 | DOI | MR
[8] I. Schur, “Zur Theorie der vertauschbaren Matrizen”, J. Reine Angew. Math., 130 (1905), 66–76 | DOI
[9] N. Jacobson, “Schur's theorems on commutative matrices”, Bull. Amer. Math. Soc., 50:6 (1944), 431–436 | DOI | MR
[10] M. Mirzakhani, “A simple proof of a theorem of Schur”, Amer. Math. Monthly, 105:3 (1998), 260–262 | DOI | MR
[11] G. F. Helminck, J. W. van de Leur, “Darboux transformations for the KP-hierarchy in the Segal–Wilson setting”, Canad. J. Math., 53:2 (2001), 278–309 | DOI | MR
[12] G. F. Khelmink, V. A. Poberezhnyi, S. V. Polenkova, “Strogie versii integriruemykh ierarkhii psevdoraznostnykh operatorov i soputstvuyuschikh zadach Koshi”, TMF, 198:2 (2019), 225–245 | DOI | DOI | MR