Cauchy problems related to integrable matrix hierarchies
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 251-270 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the solvability of two Cauchy problems in matrix pseudodifferential operators. The first is associated with a set of matrix pseudodifferential operators of negative order, a prominent example being the set of strict integral operator parts of products of a solution $(L,\{U_\alpha\})$ of the $\mathbf h[\partial]$-hierarchy, where $\mathbf h$ is a maximal commutative subalgebra of $gl_n(\mathbb{C})$. We show that it can be solved in the case of compatibility completeness of the adopted setting. The second Cauchy problem is slightly more general and relates to a set of matrix pseudodifferential operators of order zero or less. The key example here is the collection of integral operator parts of the different products of a solution $\{V_\alpha\}$ of the strict $\mathbf h[\partial]$-hierarchy. This system is solvable if two properties hold{:} the Cauchy solvability in dimension $n$ and the compatibility completeness. Both conditions are shown to hold in the formal power series setting.
Keywords: Cauchy problem, formal power series, integrable deformations, matrix pseudodifferential operators, $\mathbf h[\partial]$-hierarchy, strict $\mathbf h[\partial]$-hierarchy, zero-curvature equations.
@article{TMF_2023_216_2_a4,
     author = {G. F. Helminck},
     title = {Cauchy problems related to integrable matrix hierarchies},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {251--270},
     year = {2023},
     volume = {216},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a4/}
}
TY  - JOUR
AU  - G. F. Helminck
TI  - Cauchy problems related to integrable matrix hierarchies
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 251
EP  - 270
VL  - 216
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a4/
LA  - ru
ID  - TMF_2023_216_2_a4
ER  - 
%0 Journal Article
%A G. F. Helminck
%T Cauchy problems related to integrable matrix hierarchies
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 251-270
%V 216
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a4/
%G ru
%F TMF_2023_216_2_a4
G. F. Helminck. Cauchy problems related to integrable matrix hierarchies. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 251-270. http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a4/

[1] G. F. Helminck, “Integrable deformations in the matrix pseudo differential operators”, J. Geom. Phys., 113 (2017), 104–116 | DOI | MR

[2] G. Wilson, “Commuting flows and conservation laws for Lax equations”, Math. Proc. Cambridge Philos. Soc., 86:1 (1979), 131–143 | DOI | MR

[3] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Operator approach to the Kadomtsev–Petviashvili equation. Transformation Groups for Soliton Equations III”, J. Phys. Soc. Japan, 50:11 (1981), 3806–3812 | DOI | MR

[4] G. F. Helminck, G. F. Post, “A convergent framework for the multicomponent KP-hierarchy”, Trans. Amer. Math. Soc., 324:1 (1991), 271–292 | DOI | MR

[5] M. Gerstenhaber, “On dominance and varieties of commuting matrices”, Ann. Math., 73:2 (1961), 324–348 | DOI | MR

[6] R. C. Courter, “The dimension of maximal commutative subalgebras of $K_n$”, Duke Math. J., 32:2 (1965), 225–232 | DOI | MR

[7] T. J. Laffey, “The minimal dimension of maximal commutative subalgebras of full matrix algebras”, Linear Algebra Appl., 71 (1985), 199–212 | DOI | MR

[8] I. Schur, “Zur Theorie der vertauschbaren Matrizen”, J. Reine Angew. Math., 130 (1905), 66–76 | DOI

[9] N. Jacobson, “Schur's theorems on commutative matrices”, Bull. Amer. Math. Soc., 50:6 (1944), 431–436 | DOI | MR

[10] M. Mirzakhani, “A simple proof of a theorem of Schur”, Amer. Math. Monthly, 105:3 (1998), 260–262 | DOI | MR

[11] G. F. Helminck, J. W. van de Leur, “Darboux transformations for the KP-hierarchy in the Segal–Wilson setting”, Canad. J. Math., 53:2 (2001), 278–309 | DOI | MR

[12] G. F. Khelmink, V. A. Poberezhnyi, S. V. Polenkova, “Strogie versii integriruemykh ierarkhii psevdoraznostnykh operatorov i soputstvuyuschikh zadach Koshi”, TMF, 198:2 (2019), 225–245 | DOI | DOI | MR