Polygon gluing and commuting bosonic operators
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 234-244

Voir la notice de l'article provenant de la source Math-Net.Ru

Two families of commuting Hamiltonians are constructed, parameterized by a constant matrix. The first series is new and the second is known, and in our approach follows from the first series. For the proof, we use known facts on the relations between random matrices and Hurwitz numbers, but the text is selfcontained and does not require acquaintance with previous work.
Keywords: polygon gluing, commuting quantum Hamilonians.
@article{TMF_2023_216_2_a2,
     author = {A. Yu. Orlov},
     title = {Polygon gluing and commuting bosonic operators},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {234--244},
     publisher = {mathdoc},
     volume = {216},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a2/}
}
TY  - JOUR
AU  - A. Yu. Orlov
TI  - Polygon gluing and commuting bosonic operators
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 234
EP  - 244
VL  - 216
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a2/
LA  - ru
ID  - TMF_2023_216_2_a2
ER  - 
%0 Journal Article
%A A. Yu. Orlov
%T Polygon gluing and commuting bosonic operators
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 234-244
%V 216
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a2/
%G ru
%F TMF_2023_216_2_a2
A. Yu. Orlov. Polygon gluing and commuting bosonic operators. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 234-244. http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a2/