On a~class of quadratic conservation laws for Newton equations in Euclidean space
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 350-382

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss quadratic conservation laws for the Newton equations and the corresponding second-order Killing tensors in Euclidean space. In this case, the complete set of integrals of motion consists of polynomials of the second, fourth, sixth, and so on degrees in momenta, which can be constructed using the Lax matrix related to the hierarchy of the multicomponent nonlinear Schrödinger equation.
Keywords: Killing tensors, integrable systems, symmetric spaces.
@article{TMF_2023_216_2_a10,
     author = {A. V. Tsiganov and E. O. Porubov},
     title = {On a~class of quadratic conservation laws for {Newton} equations in {Euclidean} space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {350--382},
     publisher = {mathdoc},
     volume = {216},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a10/}
}
TY  - JOUR
AU  - A. V. Tsiganov
AU  - E. O. Porubov
TI  - On a~class of quadratic conservation laws for Newton equations in Euclidean space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 350
EP  - 382
VL  - 216
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a10/
LA  - ru
ID  - TMF_2023_216_2_a10
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%A E. O. Porubov
%T On a~class of quadratic conservation laws for Newton equations in Euclidean space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 350-382
%V 216
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a10/
%G ru
%F TMF_2023_216_2_a10
A. V. Tsiganov; E. O. Porubov. On a~class of quadratic conservation laws for Newton equations in Euclidean space. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 350-382. http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a10/