@article{TMF_2023_216_2_a10,
author = {A. V. Tsiganov and E. O. Porubov},
title = {On a~class of quadratic conservation laws for {Newton} equations in {Euclidean} space},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {350--382},
year = {2023},
volume = {216},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a10/}
}
TY - JOUR AU - A. V. Tsiganov AU - E. O. Porubov TI - On a class of quadratic conservation laws for Newton equations in Euclidean space JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 350 EP - 382 VL - 216 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a10/ LA - ru ID - TMF_2023_216_2_a10 ER -
A. V. Tsiganov; E. O. Porubov. On a class of quadratic conservation laws for Newton equations in Euclidean space. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 350-382. http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a10/
[1] S. Agapov, V. Shubin, “Rational integrals of 2-dimensional geodesic flows: new examples”, J. Geom. Phys., 170 (2021), 104389, 8 pp., arXiv: 2106.10645 | DOI | MR | Zbl
[2] A. Aoki, T. Houri, K. Tomoda, “Rational first integrals of geodesic equations and generalised hidden symmetries”, Class. Quantum Grav., 33:19 (2016), 195003, 12 pp., arXiv: 1605.08955 | DOI | MR | Zbl
[3] J. Hietarinta, “Direct methods for the search of the second invariant”, Phys. Rep., 147:2 (1987), 87–154 | DOI | MR
[4] Yu. A. Grigoriev, A. V. Tsiganov, “On superintegrable systems separable in Cartesian coordinates”, Phys. Lett. A, 382:32 (2018), 2092–2096, arXiv: 1712.07321 | DOI | MR | Zbl
[5] V. V. Kozlov, “On rational integrals of geodesic flows”, Regul. Chaotic Dyn., 19:6 (2014), 601–606 | DOI | MR | Zbl
[6] V. V. Kozlov, “Lineinye sistemy s kvadratichnym integralom i polnaya integriruemost uravneniya Shredingera”, UMN, 74:5(449) (2019), 189–190 | DOI | DOI | MR
[7] V. V. Kozlov, “Kvadratichnye zakony sokhraneniya uravnenii matematicheskoi fiziki”, UMN, 75:3(453) (2020), 55–106 | DOI | DOI | MR
[8] A. V. Tsyganov, “O superintegriruemykh sistemax c algebraicheskimi i ratsionalnymi integralami dvizheniya”, TMF, 199:2 (2019), 218–234 | DOI | DOI | MR
[9] A. V. Tsiganov, “The Kepler problem: polynomial algebra of nonpolynomial first integrals”, Regul. Chaotic Dyn., 24:4 (2019), 353–369, arXiv: 1903.08846 | DOI | MR
[10] A. V. Tsiganov, “Hamiltonization and separation of variables for a Chaplygin ball on a rotating plane”, Regul. Chaotic Dyn., 24:2 (2019), 171–186 | DOI | MR
[11] J. Haantjes, “On $X_{m}$-forming sets of eigenvectors”, Indag. Math., 58 (1955), 158–162 | DOI
[12] A. Nijenhuis, “$X_{n-1}$-forming sets of eigenvectors”, Indag. Math., 54 (1951), 200–212 | DOI | MR
[13] L. P. Eisenhart, “Separable systems of Stäckel”, Ann. Math., 35:2 (1934), 284–305 | DOI | MR
[14] L. P. Eisenhart, “Stäckel systems in conformal Euclidean space”, Ann. Math., 36:1 (1935), 57–70 | DOI | MR
[15] T. Levi-Civita, “Sulle trasformazioni delle equazioni dinamiche”, Annali di Matematica, 24 (1896), 255–300 | DOI
[16] S. Benenti, “Separability in Riemannian manifolds”, SIGMA, 12 (2016), 013, 21 pp., arXiv: 1512.07833 | DOI | MR | Zbl
[17] E. G. Kalnins, W. Miller, Jr., “Killing tensors and variable separation for Hamilton–Jacobi and Helmholtz equations”, SIAM J. Math. Anal., 11 (1980), 1011–1026 | DOI | MR | Zbl
[18] J. T. Horwood, R. G. McLenaghan, R. G. Smirnov, “Invariant classification of orthogonally separable Hamiltonian systems in Euclidean space”, Commun. Math. Phys., 259 (2005), 679–709, arXiv: math-ph/0605023 | DOI | MR
[19] K. Schöbel, A. P. Veselov, “Separation coordinates, moduli spaces and Stasheff polytopes”, Commun. Math. Phys., 337:3 (2015), 1255–1274, arXiv: 1307.6132 | DOI | MR
[20] V. S. Matveev, P. J. Topalov, “Integrability in the theory of geodesically equivalent metrics”, J. Phys. A: Math. Gen., 34:11 (2001), 2415–2433 | DOI | MR
[21] M. Walker, R. Penrose, “On quadratic first integrals of the geodesic equations for type $\{22\}$ spacetimes”, Commun. Math. Phys., 18:4 (1970), 265–274 | DOI | MR
[22] A. V. Tsiganov, “Killing tensors with nonvanishing Haantjes torsion and integrable systems”, Regul. Chaotic Dyn., 20:4 (2015), 463–475 | DOI | MR | Zbl
[23] A. V. Tsyganov, “O dvukh integriruemykh sistemakh s integralami dvizheniya chetvertoi stepeni”, TMF, 186:3 (2016), 443–455 | DOI | DOI | MR
[24] A. V. Tsiganov, “On integrable systems outside Nijenhuis and Haantjes geometry”, J. Geom. Phys., 178 (2022), 104571, 12 pp., arXiv: 2102.10272 | DOI | MR | Zbl
[25] A. V. Tsyganov, “O tenzorakh Killinga v trekhmernom evklidovom prostranstve”, TMF, 212:1 (2022), 149–164 | DOI | DOI
[26] A. Fordy, P. P. Kulish, “Nonlinear Schrödinger equations and simple Lie algebras”, Commun. Math. Phys., 89:3 (1983), 427–443 | DOI | MR | Zbl
[27] A. Fordy, “Derivative nonlinear Schrödinger equations and Hermitian symmetric spaces”, J. Phys. A: Math. Gen., 17:6 (1984), 1235–1245 | DOI | MR | Zbl
[28] A. Fordy, S. Wojciechoski, I. Marshall, “A family of integrable quartic potentials related to symmetric spaces”, Phys. Lett. A, 113:6 (1986), 395–400 | DOI | MR
[29] A. G. Reiman, “Orbitnaya interpretatsiya gamiltonovykh sistem tipa angarmonicheskogo ostsillyatora”, Differentsialnaya geometriya, gruppy Li i mekhanika. VIII, Zap. nauchn. sem. LOMI, 155, Izd-vo “Nauka”, Leningrad. otd., L., 1986, 187–189 | DOI | Zbl
[30] A. M. Perelomov, Integriruemye sistemy klassicheskoi mekhaniki i algebry Li, Nauka, M., 1990 | DOI | MR
[31] M. A. Olshanetskii, A. M. Perelomov, A. G. Reiman, M. A. Semenov-Tyan-Shanskii, “Integriruemye sistemy. II”, Dinamicheskie sistemy – 7, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Fundam. napravleniya, 16, VINITI, M., 1987, 86–226 | MR | MR | Zbl
[32] A. G. Reiman, M. A. Semenov-Tyan-Shanskii, Integriruemye sistemy. Teoretiko-gruppovoi podkhod, In-t kompyuternykh issledovanii, M.–Izhevsk, 2003
[33] V. V. Trofimov, A. T. Fomenko, “Geometricheskie i algebraicheskie mekhanizmy integriruemosti gamiltonovykh sistem na odnorodnykh prostranstvakh i algebrakh Li”, Dinamicheskie sistemy – 7, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Fundam. napravleniya, 16, VINITI, M., 1987, 227–299 | MR | Zbl
[34] S. Khelgason, Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964 | DOI | MR | MR | Zbl
[35] P. Deift, L. C. Li, T. Nanda, C. Tomei, “The Toda flow on a generic orbit is integrable”, Comm. Pure Applied Math., 39:2 (1986), 183–232 | DOI
[36] Yu. A. Grigoryev, A. V. Tsiganov, “Symbolic software for separation of variables in the Hamilton–Jacobi equation for the $L$-systems”, Regul. Chaotic Dyn., 10:4 (2005), 413–422 | DOI | MR
[37] A. Nijenhuis, R. W. Richardson, Jr., “Deformations of Lie algebra structures”, J. Math. Mech., 17:1 (1967), 89–105 | MR | Zbl
[38] O. I. Bogoyavlenskii, “Obschie algebraicheskie tozhdestva dlya tenzorov Niienkheisa i Khaantzhesa”, Izv. RAN. Ser. matem., 68:6 (2004), 71–84 | DOI | DOI | MR | Zbl
[39] C. Athorne, A. Fordy, “Generalised KdV and MKdV equations associated with symmetric spaces”, J. Phys. A: Math. Gen., 20:6 (1987), 1377–1386 | DOI | MR | Zbl
[40] J. H. Conway, D. A. Smith, On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry, A. K. Peters, Natick, MA, 2003 | MR | Zbl
[41] P. Lounesto, Clifford Algebras and Spinors, London Mathematical Society Lecture Note Series, 286, Cambridge Univ. Press, Cambridge, 2001 | DOI | MR | Zbl
[42] H. P. Manning, Geometry of Four Dimensions, Dover, Mineola, NY, 1956
[43] B. Dorizzi, B. Grammaticos, J. Hietarinta, A. Ramani, F. Schwarz, “New integrable three-dimensional quartic potentials”, Phys. Lett. A, 116:9 (1986), 432–436 | DOI | MR