On a class of quadratic conservation laws for Newton equations in Euclidean space
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 350-382 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss quadratic conservation laws for the Newton equations and the corresponding second-order Killing tensors in Euclidean space. In this case, the complete set of integrals of motion consists of polynomials of the second, fourth, sixth, and so on degrees in momenta, which can be constructed using the Lax matrix related to the hierarchy of the multicomponent nonlinear Schrödinger equation.
Keywords: Killing tensors, integrable systems, symmetric spaces.
@article{TMF_2023_216_2_a10,
     author = {A. V. Tsiganov and E. O. Porubov},
     title = {On a~class of quadratic conservation laws for {Newton} equations in {Euclidean} space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {350--382},
     year = {2023},
     volume = {216},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a10/}
}
TY  - JOUR
AU  - A. V. Tsiganov
AU  - E. O. Porubov
TI  - On a class of quadratic conservation laws for Newton equations in Euclidean space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 350
EP  - 382
VL  - 216
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a10/
LA  - ru
ID  - TMF_2023_216_2_a10
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%A E. O. Porubov
%T On a class of quadratic conservation laws for Newton equations in Euclidean space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 350-382
%V 216
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a10/
%G ru
%F TMF_2023_216_2_a10
A. V. Tsiganov; E. O. Porubov. On a class of quadratic conservation laws for Newton equations in Euclidean space. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 350-382. http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a10/

[1] S. Agapov, V. Shubin, “Rational integrals of 2-dimensional geodesic flows: new examples”, J. Geom. Phys., 170 (2021), 104389, 8 pp., arXiv: 2106.10645 | DOI | MR | Zbl

[2] A. Aoki, T. Houri, K. Tomoda, “Rational first integrals of geodesic equations and generalised hidden symmetries”, Class. Quantum Grav., 33:19 (2016), 195003, 12 pp., arXiv: 1605.08955 | DOI | MR | Zbl

[3] J. Hietarinta, “Direct methods for the search of the second invariant”, Phys. Rep., 147:2 (1987), 87–154 | DOI | MR

[4] Yu. A. Grigoriev, A. V. Tsiganov, “On superintegrable systems separable in Cartesian coordinates”, Phys. Lett. A, 382:32 (2018), 2092–2096, arXiv: 1712.07321 | DOI | MR | Zbl

[5] V. V. Kozlov, “On rational integrals of geodesic flows”, Regul. Chaotic Dyn., 19:6 (2014), 601–606 | DOI | MR | Zbl

[6] V. V. Kozlov, “Lineinye sistemy s kvadratichnym integralom i polnaya integriruemost uravneniya Shredingera”, UMN, 74:5(449) (2019), 189–190 | DOI | DOI | MR

[7] V. V. Kozlov, “Kvadratichnye zakony sokhraneniya uravnenii matematicheskoi fiziki”, UMN, 75:3(453) (2020), 55–106 | DOI | DOI | MR

[8] A. V. Tsyganov, “O superintegriruemykh sistemax c algebraicheskimi i ratsionalnymi integralami dvizheniya”, TMF, 199:2 (2019), 218–234 | DOI | DOI | MR

[9] A. V. Tsiganov, “The Kepler problem: polynomial algebra of nonpolynomial first integrals”, Regul. Chaotic Dyn., 24:4 (2019), 353–369, arXiv: 1903.08846 | DOI | MR

[10] A. V. Tsiganov, “Hamiltonization and separation of variables for a Chaplygin ball on a rotating plane”, Regul. Chaotic Dyn., 24:2 (2019), 171–186 | DOI | MR

[11] J. Haantjes, “On $X_{m}$-forming sets of eigenvectors”, Indag. Math., 58 (1955), 158–162 | DOI

[12] A. Nijenhuis, “$X_{n-1}$-forming sets of eigenvectors”, Indag. Math., 54 (1951), 200–212 | DOI | MR

[13] L. P. Eisenhart, “Separable systems of Stäckel”, Ann. Math., 35:2 (1934), 284–305 | DOI | MR

[14] L. P. Eisenhart, “Stäckel systems in conformal Euclidean space”, Ann. Math., 36:1 (1935), 57–70 | DOI | MR

[15] T. Levi-Civita, “Sulle trasformazioni delle equazioni dinamiche”, Annali di Matematica, 24 (1896), 255–300 | DOI

[16] S. Benenti, “Separability in Riemannian manifolds”, SIGMA, 12 (2016), 013, 21 pp., arXiv: 1512.07833 | DOI | MR | Zbl

[17] E. G. Kalnins, W. Miller, Jr., “Killing tensors and variable separation for Hamilton–Jacobi and Helmholtz equations”, SIAM J. Math. Anal., 11 (1980), 1011–1026 | DOI | MR | Zbl

[18] J. T. Horwood, R. G. McLenaghan, R. G. Smirnov, “Invariant classification of orthogonally separable Hamiltonian systems in Euclidean space”, Commun. Math. Phys., 259 (2005), 679–709, arXiv: math-ph/0605023 | DOI | MR

[19] K. Schöbel, A. P. Veselov, “Separation coordinates, moduli spaces and Stasheff polytopes”, Commun. Math. Phys., 337:3 (2015), 1255–1274, arXiv: 1307.6132 | DOI | MR

[20] V. S. Matveev, P. J. Topalov, “Integrability in the theory of geodesically equivalent metrics”, J. Phys. A: Math. Gen., 34:11 (2001), 2415–2433 | DOI | MR

[21] M. Walker, R. Penrose, “On quadratic first integrals of the geodesic equations for type $\{22\}$ spacetimes”, Commun. Math. Phys., 18:4 (1970), 265–274 | DOI | MR

[22] A. V. Tsiganov, “Killing tensors with nonvanishing Haantjes torsion and integrable systems”, Regul. Chaotic Dyn., 20:4 (2015), 463–475 | DOI | MR | Zbl

[23] A. V. Tsyganov, “O dvukh integriruemykh sistemakh s integralami dvizheniya chetvertoi stepeni”, TMF, 186:3 (2016), 443–455 | DOI | DOI | MR

[24] A. V. Tsiganov, “On integrable systems outside Nijenhuis and Haantjes geometry”, J. Geom. Phys., 178 (2022), 104571, 12 pp., arXiv: 2102.10272 | DOI | MR | Zbl

[25] A. V. Tsyganov, “O tenzorakh Killinga v trekhmernom evklidovom prostranstve”, TMF, 212:1 (2022), 149–164 | DOI | DOI

[26] A. Fordy, P. P. Kulish, “Nonlinear Schrödinger equations and simple Lie algebras”, Commun. Math. Phys., 89:3 (1983), 427–443 | DOI | MR | Zbl

[27] A. Fordy, “Derivative nonlinear Schrödinger equations and Hermitian symmetric spaces”, J. Phys. A: Math. Gen., 17:6 (1984), 1235–1245 | DOI | MR | Zbl

[28] A. Fordy, S. Wojciechoski, I. Marshall, “A family of integrable quartic potentials related to symmetric spaces”, Phys. Lett. A, 113:6 (1986), 395–400 | DOI | MR

[29] A. G. Reiman, “Orbitnaya interpretatsiya gamiltonovykh sistem tipa angarmonicheskogo ostsillyatora”, Differentsialnaya geometriya, gruppy Li i mekhanika. VIII, Zap. nauchn. sem. LOMI, 155, Izd-vo “Nauka”, Leningrad. otd., L., 1986, 187–189 | DOI | Zbl

[30] A. M. Perelomov, Integriruemye sistemy klassicheskoi mekhaniki i algebry Li, Nauka, M., 1990 | DOI | MR

[31] M. A. Olshanetskii, A. M. Perelomov, A. G. Reiman, M. A. Semenov-Tyan-Shanskii, “Integriruemye sistemy. II”, Dinamicheskie sistemy – 7, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Fundam. napravleniya, 16, VINITI, M., 1987, 86–226 | MR | MR | Zbl

[32] A. G. Reiman, M. A. Semenov-Tyan-Shanskii, Integriruemye sistemy. Teoretiko-gruppovoi podkhod, In-t kompyuternykh issledovanii, M.–Izhevsk, 2003

[33] V. V. Trofimov, A. T. Fomenko, “Geometricheskie i algebraicheskie mekhanizmy integriruemosti gamiltonovykh sistem na odnorodnykh prostranstvakh i algebrakh Li”, Dinamicheskie sistemy – 7, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Fundam. napravleniya, 16, VINITI, M., 1987, 227–299 | MR | Zbl

[34] S. Khelgason, Differentsialnaya geometriya i simmetricheskie prostranstva, Mir, M., 1964 | DOI | MR | MR | Zbl

[35] P. Deift, L. C. Li, T. Nanda, C. Tomei, “The Toda flow on a generic orbit is integrable”, Comm. Pure Applied Math., 39:2 (1986), 183–232 | DOI

[36] Yu. A. Grigoryev, A. V. Tsiganov, “Symbolic software for separation of variables in the Hamilton–Jacobi equation for the $L$-systems”, Regul. Chaotic Dyn., 10:4 (2005), 413–422 | DOI | MR

[37] A. Nijenhuis, R. W. Richardson, Jr., “Deformations of Lie algebra structures”, J. Math. Mech., 17:1 (1967), 89–105 | MR | Zbl

[38] O. I. Bogoyavlenskii, “Obschie algebraicheskie tozhdestva dlya tenzorov Niienkheisa i Khaantzhesa”, Izv. RAN. Ser. matem., 68:6 (2004), 71–84 | DOI | DOI | MR | Zbl

[39] C. Athorne, A. Fordy, “Generalised KdV and MKdV equations associated with symmetric spaces”, J. Phys. A: Math. Gen., 20:6 (1987), 1377–1386 | DOI | MR | Zbl

[40] J. H. Conway, D. A. Smith, On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry, A. K. Peters, Natick, MA, 2003 | MR | Zbl

[41] P. Lounesto, Clifford Algebras and Spinors, London Mathematical Society Lecture Note Series, 286, Cambridge Univ. Press, Cambridge, 2001 | DOI | MR | Zbl

[42] H. P. Manning, Geometry of Four Dimensions, Dover, Mineola, NY, 1956

[43] B. Dorizzi, B. Grammaticos, J. Hietarinta, A. Ramani, F. Schwarz, “New integrable three-dimensional quartic potentials”, Phys. Lett. A, 116:9 (1986), 432–436 | DOI | MR