Dyson diffusion on a curved contour
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 226-233 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We define the Dyson diffusion process on a curved smooth closed contour in the plane and derive the Fokker–Planck equation for the probability density. Its stationary solution is shown to be the Boltzmann weight for the logarithmic gas confined on the contour.
Mots-clés : diffusion process
Keywords: logarithmic gas, partition function.
@article{TMF_2023_216_2_a1,
     author = {A. V. Zabrodin},
     title = {Dyson diffusion on a~curved contour},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {226--233},
     year = {2023},
     volume = {216},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a1/}
}
TY  - JOUR
AU  - A. V. Zabrodin
TI  - Dyson diffusion on a curved contour
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 226
EP  - 233
VL  - 216
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a1/
LA  - ru
ID  - TMF_2023_216_2_a1
ER  - 
%0 Journal Article
%A A. V. Zabrodin
%T Dyson diffusion on a curved contour
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 226-233
%V 216
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a1/
%G ru
%F TMF_2023_216_2_a1
A. V. Zabrodin. Dyson diffusion on a curved contour. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 226-233. http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a1/

[1] F. J. Dyson, “A Brownian-motion model for the eigenvalues of a random matrix”, J. Math. Phys., 3:6 (1962), 1191–1198 | DOI | MR

[2] F. J. Dyson, “Statistical theory of the energy levels of complex systems. I”, J. Math. Phys., 3:1 (1962), 140–156 ; “Statistical theory of the energy levels of complex systems. II”, 157–165 | DOI | MR | DOI

[3] P. J. Forrester, Log-Gases and Random Matrices, London Mathematical Society Monographs Series, 34, Princeton Univ. Press, Princeton, 2010 | DOI | MR

[4] P. Wiegmann, A. Zabrodin, “Dyson gas on a curved contour”, J. Phys. A: Math. Theor., 55:16 (2022), 165202, 34 pp. | DOI | MR

[5] F. C. Klebaner, Introduction to Stochastic Calculus and Applications, Imperial College Press, London, 1998 | MR

[6] B. Oksendal, Stokhasticheskie differentsialnye uravneniya. Vvedenie v teoriyu i prilozheniya, Mir, AST, M., 2003 | DOI | MR

[7] B. Jancovici, “Classical Coulomb systems: Screening and correlations revisited”, J. Stat. Phys., 80 (1995), 445–459 | DOI

[8] P. Wiegmann, A. Zabrodin, “Large scale correlations in normal non-Hermitian matrix ensembles”, J. Phys. A: Math. Gen., 36:12 (2003), 3411–3424 | DOI | MR

[9] P. Wiegmann, A. Zabrodin, “Large $N$ expansion for normal and complex matrix ensembles”, Frontiers in Number Theory, Physics and Geometry. I, eds. P. Cartier, B. Julia, P. Moussa, P. Vanhove, Springer, Berlin, 2006, 213–229 | MR

[10] A. Zabrodin, P. Wiegmann, “Large $N$ expansion for the 2D Dyson gas”, J. Phys. A: Math. Gen., 39:28 (2006), 8933–8964 | DOI | MR

[11] A. Zabrodin, “Matrix models and growth processes: from viscous flows to the quantum Hall effect”, Applications of Random Matrices in Physics, NATO Science Series II: Mathematics, Physics and Chemistry Mathematics, Physics and Chemistry, 221, eds. É. Brézin, V. Kazakov, D. Serban, P. Wiegmann, A. Zabrodin, Springer, Dordrecht, 2006, 261–318, arXiv: hep-th/0412219 | DOI | MR

[12] K. Johansson, Strong Szegő theorem on a Jordan curve, arXiv: 2110.11032

[13] Y. Wang, “Equivalent descriptions of the Loewner energy”, Invent. Math., 218:2 (2019), 573–621 | DOI | MR

[14] Y. Wang, “Large deviations of Schramm–Loewner evolutions: A survey”, Probab. Surv., 19 (2022), 351–403 | DOI | MR

[15] L. Takhtajan, L.-P. Teo, “Kähler potential and period mapping”, Weil–Petersson Metric on the Universal Teichmüller Space, Chapter 2, Memoirs of the American Mathematical Society, 183, No 861, AMS, Providence, RI, 2006, arXiv: math/0406408 | DOI | MR