Dyson diffusion on a~curved contour
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 226-233

Voir la notice de l'article provenant de la source Math-Net.Ru

We define the Dyson diffusion process on a curved smooth closed contour in the plane and derive the Fokker–Planck equation for the probability density. Its stationary solution is shown to be the Boltzmann weight for the logarithmic gas confined on the contour.
Mots-clés : diffusion process
Keywords: logarithmic gas, partition function.
@article{TMF_2023_216_2_a1,
     author = {A. V. Zabrodin},
     title = {Dyson diffusion on a~curved contour},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {226--233},
     publisher = {mathdoc},
     volume = {216},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a1/}
}
TY  - JOUR
AU  - A. V. Zabrodin
TI  - Dyson diffusion on a~curved contour
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 226
EP  - 233
VL  - 216
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a1/
LA  - ru
ID  - TMF_2023_216_2_a1
ER  - 
%0 Journal Article
%A A. V. Zabrodin
%T Dyson diffusion on a~curved contour
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 226-233
%V 216
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a1/
%G ru
%F TMF_2023_216_2_a1
A. V. Zabrodin. Dyson diffusion on a~curved contour. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 226-233. http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a1/