Higher-rank generalization of the 11-vertex rational $R$-matrix: IRF–vertex relations and the associative Yang–Baxter equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 203-225 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the $\text{GL}_N$ rational $R$-matrix, which turns into the $11$-vertex $R$-matrix in the $N=2$ case. First, we describe its relations to dynamical and semidynamical $R$-matrices using the IRF–vertex type transformations. As a by-product, a new explicit form of the $\text{GL}_N$ $R$-matrix is derived. Next, we prove the quantum and the associative Yang–Baxter equations. A set of other $R$-matrix properties and $R$-matrix identities are also proved.
Mots-clés : rational $R$-matrix, IRF–vertex relations
Keywords: associative Yang–Baxter equation.
@article{TMF_2023_216_2_a0,
     author = {K. R. Atalikov and A. V. Zotov},
     title = {Higher-rank generalization of the 11-vertex rational $R$-matrix: {IRF{\textendash}vertex} relations and the~associative {Yang{\textendash}Baxter} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {203--225},
     year = {2023},
     volume = {216},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a0/}
}
TY  - JOUR
AU  - K. R. Atalikov
AU  - A. V. Zotov
TI  - Higher-rank generalization of the 11-vertex rational $R$-matrix: IRF–vertex relations and the associative Yang–Baxter equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 203
EP  - 225
VL  - 216
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a0/
LA  - ru
ID  - TMF_2023_216_2_a0
ER  - 
%0 Journal Article
%A K. R. Atalikov
%A A. V. Zotov
%T Higher-rank generalization of the 11-vertex rational $R$-matrix: IRF–vertex relations and the associative Yang–Baxter equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 203-225
%V 216
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a0/
%G ru
%F TMF_2023_216_2_a0
K. R. Atalikov; A. V. Zotov. Higher-rank generalization of the 11-vertex rational $R$-matrix: IRF–vertex relations and the associative Yang–Baxter equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 2, pp. 203-225. http://geodesic.mathdoc.fr/item/TMF_2023_216_2_a0/

[1] C. N. Yang, “Some exact results for the many-body problem in one dimension with repulsive delta-function interaction”, Phys. Rev. Lett., 19:23 (1967), 1312–1315 | DOI | MR

[2] R. J. Baxter, “Partition function of the eight-vertex lattice model”, Ann. Phys., 70:1 (1972), 193–228 | DOI | MR

[3] E. K. Sklyanin, “Metod obratnoi zadachi rasseyaniya i kvantovoe nelineinoe uravnenie Shredingera”, Dokl. AN SSSR, 244:6 (1978), 1337–1341 ; Е. К. Склянин, Л. А. Тахтаджян, Л. Д. Фаддеев, “Квантовый метод обратной задачи. I”, ТМФ, 40:2 (1979), 194–220 ; P. P. Kulish, N. Yu. Reshetikhin, E. K. Sklyanin, “Yang–Baxter equation and representation theory: I”, Lett. Math. Phys., 5:5 (1981), 393–403 | MR | DOI | MR | DOI | MR

[4] I. V. Cherednik, “Ob odnom metode postroeniya faktorizovannykh $S$-matrits v elementarnykh funktsiyakh”, TMF, 43:1 (1980), 117–119 | DOI | MR

[5] P. P. Kulish, N. Manoilovich, Z. Nad, “Zhordanova deformatsiya otkrytoi $XXX$-spinovoi tsepochki”, TMF, 163:2 (2010), 288–298 | DOI | DOI

[6] A. Levin, M. Olshanetsky, A. Zotov, “Classical integrable systems and soliton equations related to eleven-vertex $R$-matrix”, Nucl. Phys. B, 887 (2014), 400–422, arXiv: 1406.2995 | DOI | MR

[7] A. Smirnov, “Degenerate Sklyanin algebras”, Cent. Eur. J. Phys., 8:4 (2010), 542–554, arXiv: 0903.1466 | DOI

[8] A. Levin, M. Olshanetsky, A. Zotov, “Relativistic classical integrable tops and quantum $R$-matrices”, JHEP, 07 (2014), 012, 39 pp., arXiv: 1405.7523 | DOI

[9] G. Aminov, S. Arthamonov, A. Smirnov, A. Zotov, “Rational top and its classical $r$-matrix”, J. Phys. A: Math. Theor., 47:30 (2014), 305207, 19 pp., arXiv: 1402.3189 | DOI | MR

[10] I. Burban, B. Kreussler, Vector bundles on degenerations of elliptic curves and Yang–Baxter equations, arXiv: ; I. Burban, T. Henrich, “Semi-stable vector bundles on elliptic curves and the associative Yang–Baxter equation”, J. Geom. Phys., 62:2 (2012), 312–329, arXiv: 0708.16851011.4591 | DOI | MR

[11] R. J. Baxter, “Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. II. Equivalence to a generalized ice-type lattice model”, Ann. Phys., 76:1 (1973), 25–47 ; V. Pasquier, “Etiology of IRF models”, Commun. Math. Phys., 118:3 (1988), 355–364 | DOI | DOI | MR

[12] M. Jimbo, T. Miwa, M. Okado, “Local state probabilities of solvable lattice models: An $A_{n-1}^{(1)}$ family”, Nucl. Phys. B, 300:1 (1988), 74–108 | DOI | MR

[13] J.-L. Gervais, A. Neveu, “Novel triangle relation and absence of tachyons in Liouville string field theory”, Nucl. Phys. B, 238:1 (1984), 125–141 ; G. Felder, “Conformal field theory and integrable systems associated to elliptic curves”, Proceedings of the International Congress of Mathematicians (Zürich, Switzerland, August 3–11, 1994), Birkhäuser, Basel, 1994, 1247–1255, arXiv: ; O. Babelon, D. Bernard, E. Billey, “A quasi-Hopf algebra interpretation of quantum $3$-$j$ and $6$-$j$ symbols and difference equations”, Phys. Lett. B, 375:1–4 (1996), 89–97, arXiv: hep-th/9407154q-alg/9511019 | DOI | MR | MR | DOI | MR

[14] G. E. Arutyunov, L. O. Chekhov, S. A. Frolov, “$R$-matrix quantization of the elliptic Ruijsenaars–Schneider model”, Commun. Math. Phys., 192:2 (1998), 405–432, arXiv: q-alg/9612032 | DOI | MR

[15] J. Avan, G. Rollet, “Parametrization of semi-dynamical quantum reflection algebra”, J. Phys. A: Math. Theor., 40:11 (2007), 2709–2731, arXiv: math/0611184 | DOI | MR

[16] I. Sechin, A. Zotov, “Associative Yang–Baxter equation for quantum (semi-)dynamical $R$-matrices”, J. Math. Phys., 57:5 (2016), 053505, 14 pp., arXiv: 1511.0876 | DOI | MR

[17] S. Fomin, A. N. Kirillov, “Quadratic algebras, Dunkl elements, and Schubert calculus”, Advances in Geometry, Progress in Mathematics, 172, eds. A. Chambert-Loir, J.-H. Lu, M. Ruzhansky, Birkhäuser, Boston, 1999, 147–182 ; A. Polishchuk, “Classical Yang–Baxter equation and the $A_\infty$-constraint”, Adv. Math., 168:1 (2002), 56–95, arXiv: math/0008156 | DOI | MR | DOI | MR

[18] A. Levin, M. Olshanetsky, A. Zotov, “Planck constant as spectral parameter in integrable systems and KZB equations”, JHEP, 10 (2014), 109, 28 pp., arXiv: 1408.6246 | DOI | MR

[19] O. Ogievetsky, T. Popov, “$R$-matrices in rime”, Adv. Theor. Math. Phys., 14:2 (2010), 439–505, arXiv: 0704.1947 | DOI | MR

[20] E. S. Trunina, A. V. Zotov, “Mnogopolyusnoe obobschenie dlya ellipticheskikh modelei integriruemykh vzaimodeistvuyuschikh volchkov”, TMF, 209:1 (2021), 16–45, arXiv: ; E. Trunina, A. Zotov, “Lax equations for relativistic GL(NM,C) Gaudin models on elliptic curve”, J. Phys. A: Math. Theor., 55:39 (2022), 395202, 38 pp., arXiv: ; И. А. Сечин, А. В. Зотов, “Интегрируемая система обобщенных релятивистских взаимодействующих волчков”, ТМФ, 205:1 (2020), 55–67, arXiv: 2104.089822204.061372011.09599 | DOI | DOI | MR | DOI | MR | DOI | DOI | MR

[21] M. Matushko, A. Zotov, Anisotropic spin generalization of elliptic Macdonald–Ruijsenaars operators and $R$-matrix identities, arXiv: ; “Elliptic generalization of integrable q-deformed anisotropic Haldane–Shastry long-range spin chain”, Nonlinearity, 36:1 (2023), 319–353, arXiv: ; М. Г. Матушко, А. В. Зотов, “$R$-матричные тождества, связанные с эллиптическими анизотропными спиновыми операторами Руйсенарса–Макдональда”, ТМФ, 213:2 (2022), 268–286, arXiv: 2201.059442202.011772211.08529 | DOI | MR | DOI | DOI | MR

[22] K. Atalikov, A. Zotov, “Higher rank $1+1$ integrable Landau–Lifshitz field theories from the associative Yang–Baxter equation”, Pisma v ZhETF, 115:12 (2022), 809–810, arXiv: 2204.12576 | DOI | DOI

[23] M. Vasilyev, A. Zotov, “On factorized Lax pairs for classical many-body integrable systems”, Rev. Math. Phys., 31:6 (2019), 1930002, 45 pp., arXiv: 1804.02777 | DOI | MR

[24] A. Zotov, “Relativistic elliptic matrix tops and finite Fourier transformations”, Mod. Phys. Lett. A, 32:32 (2017), 1750169, 22 pp., arXiv: 1706.05601 | DOI | MR

[25] A. Levin, M. Olshanetsky, A. Zotov, “Noncommutative extensions of elliptic integrable Euler–Arnold tops and Painlevé VI equation”, J. Phys. A: Math. Theor., 49:39 (2016), 395202, 24 pp., arXiv: 1603.06101 | DOI | MR