Asymptotics of the~Helmholtz equation solutions in a~two-layer medium with a~localized right-hand side
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 1, pp. 148-168
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We construct the leading term of the semiclassical asymptotic solution of the Helmholtz equation with a small parameter in the localized right-hand side. This equation arises, for example, in the problem of ocean acoustics, in which the small parameter is given by the ratio of the characteristic scale of the “vertical” coordinate to that of the other coordinates. The equation is considered in the region bounded in the “vertical” coordinate; it is divided into two layers, with the coefficient in the Helmholtz equation and the derivative of the solution having fixed jump discontinuities at the interface. The technique for constructing the asymptotics involves the operator separation of variables (adiabatic approximation) and the use of the recently developed method for constructing asymptotics of equations with localized right-hand sides in the equations obtained after the variable separation.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Helmholtz equation, equation with a right-hand side, semiclassical
  asymptotics, Maslov canonical operator.
                    
                  
                
                
                @article{TMF_2023_216_1_a9,
     author = {A. Yu. Anikin and A. I. Klevin},
     title = {Asymptotics of {the~Helmholtz} equation solutions in a~two-layer medium with a~localized right-hand side},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {148--168},
     publisher = {mathdoc},
     volume = {216},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a9/}
}
                      
                      
                    TY - JOUR AU - A. Yu. Anikin AU - A. I. Klevin TI - Asymptotics of the~Helmholtz equation solutions in a~two-layer medium with a~localized right-hand side JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 148 EP - 168 VL - 216 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a9/ LA - ru ID - TMF_2023_216_1_a9 ER -
%0 Journal Article %A A. Yu. Anikin %A A. I. Klevin %T Asymptotics of the~Helmholtz equation solutions in a~two-layer medium with a~localized right-hand side %J Teoretičeskaâ i matematičeskaâ fizika %D 2023 %P 148-168 %V 216 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a9/ %G ru %F TMF_2023_216_1_a9
A. Yu. Anikin; A. I. Klevin. Asymptotics of the~Helmholtz equation solutions in a~two-layer medium with a~localized right-hand side. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 1, pp. 148-168. http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a9/
