@article{TMF_2023_216_1_a9,
author = {A. Yu. Anikin and A. I. Klevin},
title = {Asymptotics of {the~Helmholtz} equation solutions in a~two-layer medium with a~localized right-hand side},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {148--168},
year = {2023},
volume = {216},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a9/}
}
TY - JOUR AU - A. Yu. Anikin AU - A. I. Klevin TI - Asymptotics of the Helmholtz equation solutions in a two-layer medium with a localized right-hand side JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 148 EP - 168 VL - 216 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a9/ LA - ru ID - TMF_2023_216_1_a9 ER -
%0 Journal Article %A A. Yu. Anikin %A A. I. Klevin %T Asymptotics of the Helmholtz equation solutions in a two-layer medium with a localized right-hand side %J Teoretičeskaâ i matematičeskaâ fizika %D 2023 %P 148-168 %V 216 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a9/ %G ru %F TMF_2023_216_1_a9
A. Yu. Anikin; A. I. Klevin. Asymptotics of the Helmholtz equation solutions in a two-layer medium with a localized right-hand side. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 1, pp. 148-168. http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a9/
[1] B. Katsnelson, V. Petnikov, J. Lynch, Fundamentals of Shallow Water Acoustics, Springer, New York, 2012 | DOI
[2] F. B. Jensen, W. A. Kuperman, M. B. Porter, H. Schmidt, Computational Ocean Acoustics, Springer, New York, 2011 | DOI | MR
[3] G. V. Frisk, Ocean and Seabed Acoustics: A Theory of Wave Propagation, Prentice Hall PTR, Englewood Cliffs, NJ, 1998
[4] C. L. Pekeris, “Theory of propagation of explosive sound in shallow water”, Propagation of Sound in the Ocean, Geological Society of America Memoirs, 27, eds. J. L. Worzel; M. Ewing, C. L. Pekeris, Geol. Soc. Amer., New York, 1948, 1–118 | DOI
[5] P. S. Petrov, M. Yu. Trofimov, A. D. Zakharenko, “Modal perturbation theory in the case of bathymetry variations in shallow-water acoustics”, Russ. J. Math. Phys., 28:2 (2021), 257–262 | DOI | MR
[6] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, M. Rulo, “Lagranzhevy mnogoobraziya i konstruktsiya asimptotik dlya (psevdo)differentsialnykh uravnenii s lokalizovannymi pravymi chastyami”, TMF, 214:1 (2023), 3–29 | DOI | DOI
[7] V. M. Babich, “O korotkovolnovoi asimptotike funktsii Grina dlya uravneniya Gelmgoltsa”, Matem. sb., 65(107):4 (1964), 576–630 | MR | Zbl
[8] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972 | MR
[9] V. V. Belov, S. Yu. Dobrokhotov, V. P. Maslov, T. Ya. Tudorovskii, “Obobschennyi adiabaticheskii printsip dlya opisaniya dinamiki elektrona v iskrivlennykh nanostrukturakh”, UFN, 175:9 (2005), 1004–1010 | DOI | DOI
[10] V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskiy, “Operator separation of variables for adiabatic problems in quantum and wave mechanics”, J. Eng. Math., 55:1–4 (2006), 183–237 | DOI | MR
[11] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR | MR | Zbl | Zbl
[12] R. P. Feynman, “An operator calculus having applications in quantum electrodynamics”, Phys. Rev., 84:1 (1951), 108–128 | DOI | MR
[13] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, M. Rulo, “Kanonicheskii operator Maslova na pare lagranzhevykh mnogoobrazii i asimptotika reshenii statsionarnykh uravnenii s lokalizovannymi pravymi chastyami”, Dokl. RAN, 475:6 (2017), 624–628 | DOI | Zbl
[14] S. Yu. Dobrokhotov, D. S. Minenkov, M. Rulo, “Printsip Mopertyui–Yakobi dlya gamiltonianov vida $f(x,|p|)$ v nekotorykh dvumernykh statsionarnykh kvaziklassicheskikh zadachakh”, Matem. zametki, 97:1 (2015), 48–57 | DOI | DOI | MR | Zbl
[15] S. Yu. Dobrokhotov, M. Rulo, “Kvaziklassicheskii analog printsipa Mopertyui–Yakobi i ego prilozhenie k lineinoi teorii voln na vode”, Matem. zametki, 87:3 (2010), 458–463 | DOI | DOI | MR | Zbl
[16] S. Yu. Dobrokhotov, M. Rouleux, “The semi-classical Maupertuis–Jacobi correspondence for quasi-periodic hamiltonian flows with applications to linear water waves theory”, Asymptotic Anal., 74:1–2 (2011), 33–73 | DOI | MR
[17] A. Yu. Anikin, S. Yu. Dobrokhotov, A. I. Klevin, B. Tirotstsi, “Skalyarizatsiya statsionarnykh kvaziklassicheskikh zadach dlya sistem uravnenii i prilozhenie k fizike plazmy”, TMF, 193:3 (2017), 409–433 | DOI | DOI
[18] B. R. Vainberg, “O korotkovolnovoi asimptotike reshenii statsionarnykh zadach i asimptotike pri $t\to\infty$ reshenii nestatsionarnykh zadach”, UMN, 30:2(182) (1975), 3–55 | DOI | MR | Zbl
[19] P. N. Petrov, S. Yu. Dobrokhotov, “Asimptotika resheniya uravneniya Gelmgoltsa v trekhmernom sloe peremennoi tolschiny s lokalizovannoi pravoi chastyu”, Zh. vychisl. matem. i matem. fiz., 59:4 (2019), 566–578 | DOI | DOI | MR | Zbl
[20] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965 | Zbl
[21] G. Teschl, Mathematical Methods in Quantum Mechanics, Graduate Studies in Mathematics, 157, AMS, Providence, RI, 2014 | DOI | MR
[22] A. Zettl, Sturm–Liouville Theory, Mathematical Surveys and Monographs, 121, AMS, Providence, RI, 2005 | DOI | MR
[23] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl
[24] S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. I. Shafarevich, “Novye integralnye predstavleniya kanonicheskogo operatora Maslova v osobykh kartakh”, Izv. RAN. Ser. matem., 81:2 (2017), 53–96 | DOI | DOI | MR
[25] S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Efficient formulas for the Maslov canonical operator near a simple caustic”, Russ. J. Math. Phys., 25:4 (2018), 545–552 | DOI | MR
[26] S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Lagranzhevy mnogoobraziya i effektivnye formuly dlya korotkovolnovykh asimptotik v okrestnosti tochki vozvrata kaustiki”, Matem. zametki, 108:3 (2020), 334–359 | DOI | DOI | MR