Energy spectrum design and potential function engineering
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 1, pp. 133-147 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Starting with an orthogonal polynomial sequence $\{p_n(s)\}_{n=0}^{\infty}$ that has a discrete spectrum, we design an energy spectrum formula $E_k=f(s_k)$, where $\{s_k\}$ is the finite or infinite discrete spectrum of the polynomial. Using a recent approach to quantum mechanics based not on potential functions but on orthogonal energy polynomials, we give a local numerical realization of the potential function associated with the chosen energy spectrum. We select the three-parameter continuous dual Hahn polynomial as an example. Exact analytic expressions are given for the corresponding bound-state energy spectrum, the phase shift of scattering states, and the wavefunctions. However, the potential function is obtained only numerically for a given set of physical parameters.
Keywords: energy spectrum design, potential function engineering, recursion relation, continuous dual Hahn polynomial, scattering phase shift, wavefunction.
Mots-clés : orthogonal polynomials
@article{TMF_2023_216_1_a8,
     author = {A. D. Alhaidari and T. J. Taiwo},
     title = {Energy spectrum design and potential function engineering},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {133--147},
     year = {2023},
     volume = {216},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a8/}
}
TY  - JOUR
AU  - A. D. Alhaidari
AU  - T. J. Taiwo
TI  - Energy spectrum design and potential function engineering
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 133
EP  - 147
VL  - 216
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a8/
LA  - ru
ID  - TMF_2023_216_1_a8
ER  - 
%0 Journal Article
%A A. D. Alhaidari
%A T. J. Taiwo
%T Energy spectrum design and potential function engineering
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 133-147
%V 216
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a8/
%G ru
%F TMF_2023_216_1_a8
A. D. Alhaidari; T. J. Taiwo. Energy spectrum design and potential function engineering. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 1, pp. 133-147. http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a8/

[1] V. P. Krainov, Matematicheskie metody v teoreticheskoi fizike, MFTI, M., 1996

[2] A. D. Alhaidari, M. E. H. Ismail, “Quantum mechanics without potential function”, J. Math. Phys., 56:7 (2015), 072107, 19 pp. | MR

[3] A. D. Alhaidari, “Formulation of quantum mechanics without potential function”, Quant. Phys. Lett., 4:3 (2015), 51–55

[4] A. D. Alhaidari, “Representation of the quantum mechanical wavefunction by orthogonal polynomials in the energy and physical parameters”, Commun. Theor. Phys. (Beijing), 72:1 (2020), 015104, 15 pp. | DOI | MR

[5] A. D. Alhaidari, “Reconstructing the potential function in a formulation of quantum mechanics based on orthogonal polynomials”, Commun. Theor. Phys. (Beijing), 68:6 (2017), 711–728 | DOI | MR

[6] A. D. Alhaidari, “Construction of potential functions associated with a given energy spectrum – An inverse problem”, Internat. J. Modern Phys. A, 35:20 (2020), 2050104, 17 pp. | DOI | MR

[7] A. D. Alhaidari, H. Aounallah, “Construction of potential functions associated with a given energy spectrum – An inverse problem II”, Internat. J. Modern Phys. A, 35:27 (2020), 2050159, 24 pp. | DOI | MR

[8] A. D. Alhaidari, T. J. Taiwo, “Confined systems with a linear energy spectrum”, Modern Phys. Lett. A, 36:10 (2021), 2150064, 12 pp. | DOI | MR

[9] R. Koekoek, P. A. Lesky, R. F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their $q$-Analogues, Springer, Berlin, 2010 | DOI | MR

[10] K. M. Case, “Orthogonal polynomials from the viewpoint of scattering theory”, J. Math. Phys., 15:12 (1974), 2166–2174 | DOI | MR

[11] J. S. Geronimo, K. M. Case, “Scattering theory and polynomials orthogonal on the real line”, Trans. Amer. Math. Soc., 258:2 (1980), 467–494 | DOI | MR

[12] J. S. Geronimo, “A relation between the coefficients in the recurrence formula and the spectral function for orthogonal polynomials”, Trans. Amer. Math. Soc., 260:1 (1980), 65–82 | DOI | MR

[13] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, Cambridge Univ. Press, Cambridge, 2007 | MR

[14] A. Kh. Ostromogilskii, “O edinstvennosti resheniya obratnoi zadachi teorii potentsiala”, Zh. vychisl. matem. i matem. fiz., 9:5 (1969), 1189–1191 | DOI | MR | Zbl

[15] T. Aktosun, R. G. Newton, “Non-uniqueness in the one-dimensional inverse scattering problem”, Inverse Problems, 1:4 (1985), 291–300 | DOI | MR

[16] A. Neamaty, S. Mosazadeh, M. Bagherzadeh, “A uniqueness theorem of the solution of an inverse spectral problem”, Casp. J. Math. Sci., 1:2 (2012), 80–87

[17] P. C. Ojha, “$\mathrm{SO}(2,1)$ Lie algebra, the Jacobi matrix and the scattering states of the Morse oscillator”, J. Phys. A: Math. Gen., 21:4 (1988), 875–883 | DOI | MR

[18] G. A. Meurant, “A review on inverse of symmetric tridiagonal and block tridiagonal matrices”, SIAM J. Matrix Anal. Appl., 13:3 (1992), 707–728 | DOI

[19] R. A. Usmani, “Inversion of a tridiagonal Jacobi matrix”, Linear Algebra Appl., 212–213 (1994), 413–414 | DOI | MR