Energy spectrum design and potential function engineering
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 1, pp. 133-147
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Starting with an orthogonal polynomial sequence $\{p_n(s)\}_{n=0}^{\infty}$ that has a discrete spectrum, we design an energy spectrum formula $E_k=f(s_k)$, where $\{s_k\}$ is the finite or infinite discrete spectrum of the polynomial. Using a recent approach to quantum mechanics based not on potential functions but on orthogonal energy polynomials, we give a local numerical realization of the potential function associated with the chosen energy spectrum. We select the three-parameter continuous dual Hahn polynomial as an example. Exact analytic expressions are given for the corresponding bound-state energy spectrum, the phase shift of scattering states, and the wavefunctions. However, the potential function is obtained only numerically for a given set of physical parameters.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
energy spectrum design, potential function engineering, recursion relation, continuous dual Hahn polynomial, scattering phase shift, wavefunction.
Mots-clés : orthogonal polynomials
                    
                  
                
                
                Mots-clés : orthogonal polynomials
@article{TMF_2023_216_1_a8,
     author = {A. D. Alhaidari and T. J. Taiwo},
     title = {Energy spectrum design and potential function engineering},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {133--147},
     publisher = {mathdoc},
     volume = {216},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a8/}
}
                      
                      
                    TY - JOUR AU - A. D. Alhaidari AU - T. J. Taiwo TI - Energy spectrum design and potential function engineering JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 133 EP - 147 VL - 216 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a8/ LA - ru ID - TMF_2023_216_1_a8 ER -
A. D. Alhaidari; T. J. Taiwo. Energy spectrum design and potential function engineering. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 1, pp. 133-147. http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a8/
