Inverse scattering problem for the Schrödinger equation with
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 1, pp. 117-132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the Schrödinger equation with a potential that increases without bound at $+\infty$ and vanishes at $-\infty$. We explore the direct and inverse scattering problems using the transformation operator method. The basic integral equations of the inverse problem are obtained. The basic equations are shown to be uniquely solvable.
Keywords: Schrödinger equation, harmonic oscillator, scattering data, inverse scattering problem, basic integral equations.
@article{TMF_2023_216_1_a7,
     author = {A. Kh. Khanmamedov and D. G. Orudzhev},
     title = {Inverse scattering problem for {the~Schr\"odinger} equation with},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {117--132},
     year = {2023},
     volume = {216},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a7/}
}
TY  - JOUR
AU  - A. Kh. Khanmamedov
AU  - D. G. Orudzhev
TI  - Inverse scattering problem for the Schrödinger equation with
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 117
EP  - 132
VL  - 216
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a7/
LA  - ru
ID  - TMF_2023_216_1_a7
ER  - 
%0 Journal Article
%A A. Kh. Khanmamedov
%A D. G. Orudzhev
%T Inverse scattering problem for the Schrödinger equation with
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 117-132
%V 216
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a7/
%G ru
%F TMF_2023_216_1_a7
A. Kh. Khanmamedov; D. G. Orudzhev. Inverse scattering problem for the Schrödinger equation with. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 1, pp. 117-132. http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a7/

[1] I. Kay, H. E. Moses, “The determination of the scattering potential from the spectral measure function. I. Continuous spectrum”, Nuovo Cimento, 2:4 (1955), 917–961 | DOI | MR

[2] I. Kay, H. E. Moses, “The determination of the scattering potential from the spectral measure function. II. Point eigenvalues and proper eigenfunctions”, Nuovo Cimento, 3:1 (1956), 66–84 | DOI | MR

[3] I. Kay, H. E. Moses, “The determination of the scattering potential from the spectral measure function. III. Calculation of the scattering potential from the scattering operator for the one dimensional Schrodinger equation”, Nuovo Cimento, 3:2 (1956), 276–304 | DOI | MR

[4] L. D. Faddeev, “Svoistva $S$-matritsy odnomernogo uravneniya Shredingera”, Kraevye zadachi matematicheskoi fiziki. 2, Tr. MIAN SSSR, 73, Nauka, M.–L., 1964, 314–336 | MR | Zbl

[5] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | DOI | MR

[6] B. M. Levitan, Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | DOI | MR

[7] V. S. Buslaev, V. M. Fomin, “K obratnoi zadache rasseyaniya dlya odnomernogo uravneniya Shredingera na vsei osi”, Vestn. Leningr. un-ta, 17:1 (1962), 56–64 | MR

[8] I. A. Anders, V. P. Kotlyarov, “Kharakterizatsiya dannykh rasseyaniya operatorov Shredingera i Diraka”, TMF, 88:1 (1991), 72–84 | DOI | MR | Zbl

[9] L. D. Faddeev, “Obratnaya zadacha kvantovoi teorii rasseyaniya”, UMN, 14:4(88) (1959), 57–119 | DOI | MR | Zbl

[10] P. P. Kulish, “Obratnaya zadacha rasseyaniya dlya uravneniya Shredingera na osi”, Matem. zametki, 4:6 (1968), 677–684 | DOI | MR | Zbl

[11] H. P. McKean, E. Trubowitz, “The spectral class of the quantum-mechanical harmonic oscillator”, Comm. Math. Phys., 82:4 (1982), 471–495 | DOI | MR

[12] B. M. Levitan, “Ob operatorakh Shturma–Liuvillya na vsei pryamoi s odinakovym diskretnym spektrom”, Matem. sbornik, 132(174):1 (1987), 73–103 | DOI | MR

[13] D. Chelkak, P. Kargaev, E. Korotyaev, “An inverse problem for an harmonic oscillator perturbed by potential: uniqueness”, Lett. Math. Phys., 64:1 (2003), 7–21 | DOI | MR

[14] D. Chelkak, P. Kargaev, E. Korotyaev, “Inverse problem for harmonic oscillator perturbed by potential, characterization”, Comm. Math. Phys., 249:1 (2004), 133–196 | DOI | MR

[15] D. Chelkak, E. Korotyaev, “The inverse problem for perturbed harmonic oscillator on the half-line with a Dirichlet boundary condition”, Ann. Henri Poincaré, 8:6 (2007), 1115–1150 | DOI | MR

[16] S. M. Bagirova, A. Kh. Khanmamedov, “The inverse spectral problem for the perturbed harmonic oscillator on the entire axis”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 44:2 (2018), 285–294 | MR

[17] A. Kh. Khanmamedov, M. F. Muradov, “To the inverse spectral problem for a perturbed oscillator on the semiaxis”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 48:1 (2022), 12–21 | MR

[18] M. G. Gasymov, B. A. Mustafaev, “Ob obratnoi zadache teorii rasseyaniya dlya angarmonicheskogo uravneniya na poluosi”, Dokl. AN SSSR, 228:1 (1976), 11–14 | MR | Zbl

[19] F. Calogero, A. Degasperis, “Inverse spectral problem for the one-dimensional Schrödinger equation with an additional linear potential”, Lett. Nuovo Cimento, 23:4 (1978), 143–149 | DOI | MR

[20] Yishen Li, “One special inverse problem of the second order differential equation on the whole real axis”, Chinese Ann. Math., 2:2 (1981), 147–155 | MR

[21] A. P. Kachalov, Ya. V. Kurylev, “Metod operatorov preobrazovaniya v obratnoi zadache rasseyaniya. Odnomernyi shtark-effekt”, Matematicheskie voprosy teorii rasprostraneniya voln. 19, Zap. nauchn. sem. LOMI, 179, Izd-vo “Nauka”, Leningrad. otd., L., 1989, 73–87 | DOI | MR | Zbl

[22] I. M. Guseinov, A. Kh. Khanmamedov, A. F. Mamedova, “Obratnaya zadacha rasseyaniya dlya uravneniya Shredingera s dopolnitelnym kvadratichnym potentsialom na vsei osi”, TMF, 195:1 (2018), 54–63 | DOI | DOI | MR

[23] I. M. Guseinov, A. Kh. Khanmamedov, “K obratnoi zadache rasseyaniya dlya odnomernogo uravneniya Shredingera s rastuschim potentsialom”, Ukr. mat. zhurn., 70:10 (2018), 1390–1402 | DOI

[24] L. D. Faddeev, “Obratnaya zadacha kvantovoi teorii rasseyaniya. II”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem., 3, VINITI, M., 1974, 93–180 | DOI | MR | Zbl

[25] E. L. Korotyaev, “O rasseyanii vo vneshnem odnorodnom periodicheskom po vremeni magnitnom pole”, Matem. sbornik, 180:4 (1989), 491–512 | DOI | MR | Zbl

[26] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | MR | Zbl

[27] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR

[28] D. H. Orucov, “Spectral analysis of a one-dimensional Shrödinger operator with a growing potential”, News of Baku Univ., Ser. Phys.-Math. Sci., 3 (2021), 39–47

[29] D. H. Orucov, “On the transformation operator for the Schrödinger equation with an additional increasing potential”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 48:2 (2022), 311–322 | MR

[30] N. Schwid, “The asymptotic forms of the Hermite and Weber functions”, Trans. Amer. Math. Soc., 37:2 (1935), 339–362 | DOI | MR

[31] E. Ch. Titchmarsh, Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, v. 1, IL, M., 1960 | MR | MR | Zbl

[32] D. G. Orudzhev, “Razlozheniya po sobstvennym funktsiyam odnomernogo operatora Shredingera s dopolnitelnym rastuschim potentsialom”, J. Baku Eng. Univ., Math. Somput. Sci., 6:1 (2022), 19–25

[33] A. Kh. Khanmamedov, A. R. Lyatifova, “Obratnaya spektralnaya zadacha dlya odnomernogo operatora Shtarka na poluosi”, Ukr. mat. zhurn., 72:4 (2020), 494–508 | DOI

[34] E. Titchmarsh, Teoriya funktsii, Nauka, M., 1980 | MR | MR | Zbl | Zbl