Inverse scattering problem for the~Schr\"odinger equation with
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 1, pp. 117-132
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the Schrödinger equation with a potential that increases without bound at $+\infty$ and vanishes at $-\infty$. We explore the direct and inverse scattering problems using the transformation operator method. The basic integral equations of the inverse problem are obtained. The basic equations are shown to be uniquely solvable.
Keywords:
Schrödinger equation, harmonic oscillator, scattering data,
inverse scattering problem, basic integral equations.
@article{TMF_2023_216_1_a7,
author = {A. Kh. Khanmamedov and D. G. Orudzhev},
title = {Inverse scattering problem for {the~Schr\"odinger} equation with},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {117--132},
publisher = {mathdoc},
volume = {216},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a7/}
}
TY - JOUR AU - A. Kh. Khanmamedov AU - D. G. Orudzhev TI - Inverse scattering problem for the~Schr\"odinger equation with JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 117 EP - 132 VL - 216 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a7/ LA - ru ID - TMF_2023_216_1_a7 ER -
A. Kh. Khanmamedov; D. G. Orudzhev. Inverse scattering problem for the~Schr\"odinger equation with. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 1, pp. 117-132. http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a7/