Inverse scattering problem for the~Schr\"odinger equation with
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 1, pp. 117-132

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Schrödinger equation with a potential that increases without bound at $+\infty$ and vanishes at $-\infty$. We explore the direct and inverse scattering problems using the transformation operator method. The basic integral equations of the inverse problem are obtained. The basic equations are shown to be uniquely solvable.
Keywords: Schrödinger equation, harmonic oscillator, scattering data, inverse scattering problem, basic integral equations.
@article{TMF_2023_216_1_a7,
     author = {A. Kh. Khanmamedov and D. G. Orudzhev},
     title = {Inverse scattering problem for {the~Schr\"odinger} equation with},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {117--132},
     publisher = {mathdoc},
     volume = {216},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a7/}
}
TY  - JOUR
AU  - A. Kh. Khanmamedov
AU  - D. G. Orudzhev
TI  - Inverse scattering problem for the~Schr\"odinger equation with
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 117
EP  - 132
VL  - 216
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a7/
LA  - ru
ID  - TMF_2023_216_1_a7
ER  - 
%0 Journal Article
%A A. Kh. Khanmamedov
%A D. G. Orudzhev
%T Inverse scattering problem for the~Schr\"odinger equation with
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 117-132
%V 216
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a7/
%G ru
%F TMF_2023_216_1_a7
A. Kh. Khanmamedov; D. G. Orudzhev. Inverse scattering problem for the~Schr\"odinger equation with. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 1, pp. 117-132. http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a7/