@article{TMF_2023_216_1_a6,
author = {L. N. Astrakhantsev},
title = {Nonabelian fermionic {T-duality} for the~fundamental string},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {106--116},
year = {2023},
volume = {216},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a6/}
}
L. N. Astrakhantsev. Nonabelian fermionic T-duality for the fundamental string. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 1, pp. 106-116. http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a6/
[1] T. H. Busher, “Quantum corrections and extended supersymmetry in new sigma models”, Phys. Lett. B, 159:2–3 (1985), 127–130 ; “Path integral derivation of quantum duality in nonlinear sigma models”, 201:4 (1988), 466–472 | DOI | DOI | MR
[2] M. J. Duff, “Duality rotations in string theory”, Nucl. Phys. B, 335:3 (1990), 610–620 | DOI | MR
[3] T. H. Busher, “A symmetry of the string background field equations”, Phys. Lett. B, 194:1 (1987), 59–62 | DOI | MR
[4] A. Giveon, M. Porrati, E. Rabinovici, “Target space duality in string theory”, Phys. Rep., 244:2–3 (1994), 77–202 | DOI | MR
[5] X. de la Ossa, F. Quevedo, “Duality symmetries from nonAbelian isometries in string theory”, Nucl. Phys. B, 403:1–2 (1993), 377–394 | DOI | MR
[6] C. Klimčík, P. Ševera, “Dual non-Abelian duality and the Drinfeld double”, Phys. Lett. B, 351:4 (1995), 455–462 | DOI | MR
[7] C. Klimčík, “Poisson–Lie T duality”, Nucl. Phys. B Proc. Suppl., 46:1 (1996), 116–121 | DOI | MR
[8] N. Berkovits, J. Maldacena, “Dual superconformal symmetry, and the amplitude/Wilson loop connection”, JHEP, 09 (2008), 062, 44 pp., arXiv: 0807.3196 | DOI | MR
[9] L. F. Alday, J. M. Maldacena, “Gluon scattering amplitudes at strong coupling”, JHEP, 06 (2007), 064, 26 pp. | DOI | MR
[10] N. Beisert, R. Ricci, A. A. Tseytlin, M. Wolf, “Dual superconformal symmetry from AdS${}_5\,{\times}\,S^5$ superstring integrability”, Phys. Rev. D, 78:12 (2008), 126004, 21 pp. | DOI | MR
[11] E. Ó Colgáin, “Fermionic T-duality: A snapshot review”, Internat. J. Modern Phys. A, 27:12 (2012), 1230032, 24 pp. | DOI | MR
[12] I. Bakhmatov, D. S. Berman, “Exploring fermionic T-duality”, Nucl. Phys. B, 832:1–2 (2010), 89–108 | DOI | MR
[13] I. Bakhmatov, E. Ó. Colgáin, H. Yavartanoo, “Fermionic T-duality in the pp-wave limit”, JHEP, 10 (2011), 085, 19 pp., arXiv: 1109.1052 | DOI | MR
[14] L. Astrakhantsev, I. Bakhmatov, E. T. Musaev, “Non-abelian fermionic T-duality in supergravity”, JHEP, 09 (2021), 135, 24 pp., arXiv: 2101.08206 | DOI | MR
[15] W. Siegel, “Superspace duality in low-energy superstrings”, Phys. Rev. D, 48:6 (1993), 2826–2837, arXiv: hep-th/9305073 | DOI | MR
[16] W. Siegel, “Manifest duality in low-energy superstrings”, Proceedings of the Conference “Strings' 93” (Berkeley, CA, 24–29 May, 1993), eds. M. B. Halpern, A. Sevrin, G. Rivlis, World Sci., Singapore, 1995, 353–363, arXiv: hep-th/9308133
[17] O. Hohm, C. Hull, B. Zwiebach, “Background independent action for double field theory”, JHEP, 07 (2010), 016, 47 pp. ; “Generalized metric formulation of double field theory”, 08 (2010), 008, 35 pp. ; “Double field theory of type II strings”, 09 (2011), 013, 53 pp. | DOI | MR | DOI | MR | DOI | MR
[18] W. H. Baron, D. Marqués, C. A. Nuñez, “$\beta$-symmetry of supergravity”, Phys. Rev. Lett., 130:6 (2023), 061601, 6 pp., arXiv: 2209.02079 | DOI | MR
[19] M. R. Garousi, The $\beta$-symmetry in the presence of D-brane and boundary, arXiv: 2212.06425
[20] I. Jeon, K. Lee, J. H. Park, “Stringy differential geometry, beyond Riemann”, Phys. Rev. D, 84:4 (2011), 044022, 7 pp. | DOI
[21] G. Dibitetto, J. J. Fernández-Melgarejo, D. Marqués, D. Roest, “Duality orbits of non-geometric fluxes”, Fortsch. Phys., 60:11–12 (2012), 1123–1149 | DOI | MR
[22] T. Ortín, Gravity and Strings, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, Cambridge, 2015 | DOI | MR
[23] E. T. Musaev, “On non-abelian U-duality of 11D backgrounds”, Universe, 8:5 (2022), 276, 25 | DOI
[24] H. Godazgar, M. J. Perry, “Real fermionic symmetry in type II supergravity”, JHEP, 01 (2011), 032, 32 pp. | DOI | MR