Integration of the Kaup–Boussinesq system with time-dependent coefficients
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 1, pp. 63-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Kaup–Boussinesq system with time-dependent coefficients. We show that the Kaup–Boussinesq system with an additional term is also an important theoretical model, since it is a completely integrable system. We find the time evolution of scattering data for a quadratic pencil of Sturm–Liouville operators associated with the solution of the Kaup–Boussinesq system with time-dependent coefficients. The resulting equalities completely determine the scattering data at any $t$, which allows using the inverse scattering method for solving the Cauchy problem for the Kaup–Boussinesq system with time-dependent coefficients. An example is given to illustrate the application of the obtained results.
Mots-clés : Kaup–Boussinesq system, soliton solution.
Keywords: quadratic pencil of Sturm–Liouville operators, inverse scattering method
@article{TMF_2023_216_1_a4,
     author = {B. A. Babajanov and A. Sh. Azamatov and R. B. Atajanova},
     title = {Integration of {the~Kaup{\textendash}Boussinesq} system with time-dependent coefficients},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {63--75},
     year = {2023},
     volume = {216},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a4/}
}
TY  - JOUR
AU  - B. A. Babajanov
AU  - A. Sh. Azamatov
AU  - R. B. Atajanova
TI  - Integration of the Kaup–Boussinesq system with time-dependent coefficients
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 63
EP  - 75
VL  - 216
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a4/
LA  - ru
ID  - TMF_2023_216_1_a4
ER  - 
%0 Journal Article
%A B. A. Babajanov
%A A. Sh. Azamatov
%A R. B. Atajanova
%T Integration of the Kaup–Boussinesq system with time-dependent coefficients
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 63-75
%V 216
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a4/
%G ru
%F TMF_2023_216_1_a4
B. A. Babajanov; A. Sh. Azamatov; R. B. Atajanova. Integration of the Kaup–Boussinesq system with time-dependent coefficients. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 1, pp. 63-75. http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a4/

[1] D. J. Kaup, “A higher-order water-wave equation and the method for solving it”, Progr. Theor. Phys., 54:2 (1975), 396–408 | DOI | MR

[2] J. Boussinesq, “Théorie de l'itumescence liquide appelée onde solitarie ou de translation, sepropageant dans un canal rectangulaire”, C. R. Acad. Sci. Paris, 72 (1871), 755–759 | Zbl

[3] V. B. Matveev, M. I. Yavor, “Solutions presque périodiques et a N-solitons de l'equation hydrodynamique non linéaire de Kaup”, Ann. Inst. Henri Poincaré. Sect. A, 31:1 (1975), 25–41

[4] Yu. A. Mitropolskii, N. N. Bogolyubov (ml.), A. K. Prikarpatskii, V. G. Samoilenko, Integriruemye dinamicheskie sistemy: spektralnye i differentsialno-geometricheskie aspekty, Naukova dumka, Kiev, 1987 | MR

[5] A. O. Smirnov, “Veschestvennye konechnozonnye regulyarnye resheniya uravneniya Kaupa–Bussineska”, TMF, 66:1 (1986), 30–46 | DOI | MR | Zbl

[6] M. Jaulent, I. Miodek, “Nonlinear evolution equation associated with ‘energy-dependent Schrödinger potentials’ ”, Lett. Math. Phys., 1:3 (1976), 243–250 | DOI

[7] D. H. Sattinger, J. Szmigielski, “Energy dependent scattering theory”, Differ. Integr. Equ., 8:5 (1995), 945–959 | DOI | MR

[8] R. I. Ivanov, T. Lyons, “Integrable models for shallow water with energy dependent spectral problems”, J. Nonlinear Math. Phys., 19:1 (2012), 72–88 | DOI | MR

[9] A. B. Yakhshimuratov, B. A. Babajanov, “Integration of equations of Kaup system kind with self-onsistent source in class of periodic functions”, Ufimsk. matem. zhurn., 12:1 (2020), 104–114 | DOI | MR

[10] A. Cabada, A. Yakhshimuratov, “The system of Kaup equations with a self-consistent source in the class of periodic functions”, J. Math. Phys. Analys. Geom., 9:3 (2013), 287–303 | MR

[11] A. B. Yakhshimuratov, T. Kriecherbauer, B. A. Babajanov, “On the construction and integration of a hierarchy for the Kaup system with a self-consistent source in the class of periodic functions”, J. Math. Phys. Analys. Geom., 17:2 (2021), 233–257 | MR

[12] A.-M. Wazwaz, “The generalized Kaup–Boussinesq equation: multiple soliton solutions”, Waves Random Complex Media, 25:4 (2015), 473–481 | DOI | MR

[13] A. B. Yakhshimuratov, F. Abdikarimov, “The application of the functional variable method for solving the loaded non-linear evaluation equations”, Front. Appl. Math. Stat., 8 (2022), 912674, 9 pp. | DOI

[14] C. Chen, Y.-L. Jiang, “Invariant solutions and conservation laws of the generalized Kaup–Boussinesq equation”, Waves Random Complex Media, 29:1 (2017), 1–15 | DOI | MR

[15] J. Zhou, L. Tian, X. Fan, “Solitary-wave solutions to a dual equation of the Kaup–Boussinesq system”, Nonlinear Anal. Real World Appl., 11:4 (2010), 3229–3235 | DOI | MR

[16] G. U. Urazboev, I. I. Baltaeva, I. D. Rakhimov, “Obobschennyi metod (G'/G)-rasshireniya dlya nagruzhennogo uravneniya Kortevega–de Friza”, Sib. zhurn. industr. matem., 24:4 (2021), 139–147 | DOI | DOI

[17] U. A. Khoitmetov, “Integrirovanie uravneniya Khiroty s koeffitsientami, zavisyaschimi ot vremeni”, TMF, 214:1 (2023), 30–42 | DOI | DOI | MR

[18] A. B. Khasanov, M. M. Khasanov, “Integrirovanie nelineinogo uravneniya Shredingera s dopolnitelnym chlenom v klasse periodicheskikh funktsii”, TMF, 199:1 (2019), 60–68 | DOI | DOI | MR

[19] A. B. Khasanov, M. M. Matyakubov, “Integrirovanie nelineinogo uravneniya Kortevega–\allowbreakde Friza s dopolnitelnym chlenom”, TMF, 203:2 (2020), 192–204 | DOI | DOI | MR

[20] A. B. Khasanov, T. Zh. Allanazarova, “On the modified Korteweg–De-Vries equation with loaded term”, Ukr. Math. J., 73:11 (2022), 1783–1809 | DOI | MR

[21] U. B. Muminov, A. B. Khasanov, “Integrirovanie defokusiruyuschego nelineinogo uravneniya Shredingera s dopolnitelnymi chlenami”, TMF, 211:1 (2022), 84–104 | DOI | DOI

[22] B. A. Babajanov, F. Abdikarimov, “Soliton solutions of the loaded modified Calogero–Degasperis equation”, Intern. J. Appl. Math., 35:3 (2022), 381–392 | DOI

[23] B. A. Babajanov, F. Abdikarimov, “Expansion method for the loaded modified Zakharov–Kuznetsov equation”, Adv. Math. Model. Appl., 7:2 (2022), 168–177

[24] B. A. Babajanov, F. Abdikarimov, “Solitary and periodic wave solutions of the loaded modified Benjamin–Bona–Mahony equation via the functional variable method”, Res. Math., 30:1 (2022), 10–20 | DOI | Zbl

[25] A. B. Khasanov, U. A. Khoitmetov, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 38 (2021), 19–35 | DOI | MR

[26] H. Demiray, “Variable coefficient modified KdV equation in fluid-filled elastic tubes with stenosis: solitary waves”, Chaos Solitons Fractals, 42:1 (2009), 358–364 | DOI | MR

[27] F. G. Maksudov, G. Sh. Guseinov, “K resheniyu obratnoi zadachi rasseyaniya dlya kvadratichnogo puchka odnomernykh operatorov Shredingera na vsei osi”, Dokl. AN SSSR, 289:1 (1986), 42–46 | MR | Zbl

[28] B. A. Babazhanov, A. B. Khasanov, “Obratnaya zadacha dlya kvadratichnogo puchka operatorov Shturma–Liuvillya s konechnozonnym periodicheskim potentsialom na poluosi”, Differ. uravneniya, 43:1 (2007), 723–730 | MR

[29] B. A. Babazhanov, A. B. Khasanov, A. B. Yakhshimuratov, “Ob obratnoi zadache dlya kvadratichnogo puchka operatorov Shturma–Liuvillya s periodicheskim potentsialom”, Differ. uravneniya, 41:3 (2005), 298–305 | DOI | MR

[30] M. Jaulent, C. Jean, “The inverse problem for the one-dimensional Schrodinger operator with an energy dependent potential”, Ann. Inst. Henri Poincaré. Sect. A, 25:2 (1976), 105–118 | MR