Mots-clés : Tzitzéica equation
@article{TMF_2023_216_1_a3,
author = {T. Aydemir},
title = {Traveling-wave solution of the~ {Tzitz\'eica-type} equations by},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {43--62},
year = {2023},
volume = {216},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a3/}
}
T. Aydemir. Traveling-wave solution of the Tzitzéica-type equations by. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 1, pp. 43-62. http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a3/
[1] P. Veeresha, D. G. Prakasha, N. Magesh, A. J. Christopher, D. U. Sarwe, “Solution for fractional potential KdV and Benjamin equations using the novel technique”, J. Ocean Eng. Sci., 6:3 (2021), 265–275 | DOI
[2] M. H. Bashar, S. M. Y. Arafat, S. M. R. Islam, M. M. Rahman, “Wave solutions of the couple Drinfel'd–Sokolov–Wilson equation: New wave solutions and free parameters effect”, J. Ocean Eng. Sci., In Press | DOI
[3] W. B. Wang, G. W. Lou, X. M. Shen, J. Q. Song, “Exact solutions of various physical features for the fifth order potantial Bogoyavlenskii–Schiff equation”, Results Phys., 18 (2020), 103243, 4 pp. | DOI
[4] A. Alharbi, M. B. Almatrafi, “Numerical investigation of the dispersive long wave equation using an adaptive moving mesh method and its stability”, Results Phys., 16 (2020), 102870, 8 pp. | DOI
[5] B. Ghanbari, “New analytical solutions for the Oskolkov-type equations in fluid dynamics via a modified methodology”, Results Phys., 28 (2021), 104610, 11 pp. | DOI
[6] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | DOI | MR | MR | Zbl | Zbl
[7] C. Rogers, W. F. Shadwick, Bäcklund Transformations and Their Applications, Mathematics in Science and Engineering, 161, Academic Press, New York, 1982 | MR
[8] V. B. Matveev, M. A. Salle, Darboux Transform and Solitons, Springer, Berlin, 1991 | MR
[9] R. Hirota, The Direct Method in Soliton Theory, Cambridge Tracts in Mathematics, 155, Cambridge Univ. Press, Cambridge, 2004 | DOI | MR
[10] W. Malfiet, “The tanh method: a tool for solving certain classes of non-linear PDEs”, Math. Methods Appl. Sci., 28:17 (2005), 2031–2035 | DOI | MR
[11] A.-M. Wazwaz, Partial Differential Equations and Solitary Waves Theory, Springer, Berlin, 2009 | DOI | MR
[12] J.-H. He, X.-H. Wu, “Exp-function method for nonlinear wave equations”, Chaos Solitons Fractals, 30:3 (2006), 700–708 | DOI | MR
[13] Z. Y. Yan, H. Q. Zhang, “New explicit solitary wave solutions and periodic wave solutions for Whitham–Broer–Kaup equation in shallow water”, Phys. Lett. A, 285:5–6 (2001), 355–362 | DOI | MR
[14] R. Kumar, R. S. Kaushal, A. Prasad, “Solitary wave solutions of selective nonlinear diffusion-reaction equations using homogeneous balance method”, Pramana J. Phys., 75 (2010), 607–616 | DOI
[15] Z. Feng, X. Wang, “The first integral method to the two-dimensional Burgers–Korteweg–de Vries equation”, Phys. Lett. A, 308:2–3 (2003), 173–178 | DOI | MR
[16] S. T. Demiray, S. Kastak, “MEFM for exact solutions of the $(3+1)$ dimensional KZK equation and $(3+1)$ dimensional JM equation”, Afyon Kocatepe Univ. J. Sci. Eng., 21:1 (2021), 97–105 | DOI
[17] Ö. Kirci, T. Aktürk, H. Bulut, “Simulation of wave solutions of a mathematical model representing communication signals”, J. Inst. Sci. Tech., 11:4 (2021), 3086–3097 | DOI
[18] S. Akcagil, T. Aydemir, O. F. Gozukizil, “Comparison between the $(\frac{G'}{G}) $-expansion method and the extended homogeneous balance method”, New Trends Math. Sci., 3:4 (2015), 223–236 | DOI | MR
[19] S. Akcagil, T. Aydemir, O. F. Gozukizil, “Exact travelling wave solutions of nonlinear pseudoparabolic equations by using the $({G'}/{G})$-expansion method”, New Trends Math. Sci., 4:4 (2016), 51–66 | DOI
[20] Ş. Akçagil, T. Aydemir, “Comparison between the $({G'}/{G}) $-expansion method and the modified extended tanh method”, Open Phys., 14:1 (2016), 88–94 | DOI
[21] T. Aydemir, Ö. F. Gözükizil, “Exact travelling wave solutions of the Benjamin–Bona–Mahony–Burgers type (BBMB) Nonlinear pseudoparabolic equations by using the $(\frac{G'}{G}) $-expansion method”, Manas J. Eng., 4:1 (2016), 21–37
[22] T. Aydemir, Comparison between the $({G'}/{G})$-expansion method and the modified extended tanh method and improving unified method, PhD thesis, Sakarya Univ., Turkey, 2016 | MR
[23] Ö. F. Gözükizil, Ş. Akçagil, T. Aydemir, “Unification of all hyperbolic tangent function methods”, Open Phys., 14 (2016), 524–541 | DOI
[24] F. Bekhouche, M. Alquran, I. Komashynska, “Explicit rational solutions for time-space fractional nonlinear equation describing the propagation of bidirectional waves in low-pass electrical lines”, Romanian J. Phys., 66:7–8 (2021), 114, 18 pp.
[25] F. Bekhouche, I. Komashynska, “Traveling wave solutions for the space-time fractional $(2+1)$-dimensional Calogero–Bogoyavlenskii–Schiff equation via two different methods”, Int. J. Math. Comput. Sci., 16:4 (2021), 1729–1744 | MR | Zbl
[26] H. Ahmad, M. N. Alam, M. A. Rahim, M. F. Alotaibi, M. Omri, “The unified technique for the nonlinear time-fractional model with the beta-derivative”, Results Phys., 29 (2021), 104785, 13 pp. | DOI
[27] M. S. Ullah, H. O. Roshid, M. Z. Ali, A. Biswas, M. Ekici, S. Khan, L. Moraru, A. K. Alzahrani, M. R. Belic, “Optical soliton polarization with Lakshmanan–Porsezian–Daniel model by unified approach”, Results Phys., 22:3 (2021), 103958 | DOI
[28] Foyjonnesa, N. H. M. Shahen, M. M. Rahman, “Dispersive solitary wave structures with MI analysis to the unidirectional DGH equation via the unified method”, Partial Differ. Equ. Appl. Math., 6 (2022), 100444, 11 pp. | DOI
[29] M. Bilal, J. Ahmad, “Investigation of diverse genres exact soliton solutions to the nonlinear dynamical model via three mathematical methods”, J. Ocean Eng. Sci., In Press | DOI
[30] A. Akbulut, D. Kumar, “Conservation laws and optical solutions of the complex modified Korteweg–de Vries equation”, J. Ocean Eng. Sci., In Press | DOI
[31] M. Bilal, S.-U. Rehman, J. Ahmad, “Dynamical nonlinear wave structures of the predator-prey model using conformable derivative and its stability analysis”, Pramana J. Phys., 96 (2022), 149 | DOI
[32] S. M. R. Islam, M. H. Bashar, S. M. Y. Arafat, H. Wang, M. M. Roshid, “Effect of the free parameters on the Biswas–Arshed model with a unified technique”, Chinese J. Phys., 77 (2022), 2501–2519 | DOI | MR
[33] G. Tzitzéica, “Sur une nouvelle classe de surfaces”, C. R. Acad. Sci. Paris, 150 (1910), 955–956
[34] G. Tzitzéica, “Sur une nouvelle classe de surfaces”, C. R. Acad. Sci. Paris, 150 (1910), 1227–1229
[35] R. K. Dodd, R. K. Bullough, “Polynomial conserved densities for the sine-Gordon equations”, Proc. Roy. Soc. London Ser. A, 352:1671 (1977), 481–503 | DOI | MR
[36] A. M. Wazwaz, “The tanh method: solitons and periodic solutions for the Dodd–Bullough–Mikhailov and the Tzitzéica–Dodd–Bullough equations”, Chaos Solitons Fractals, 25:1 (2005), 55–63 | DOI | MR
[37] R. Abazari, “The the $\bigl(\frac{G'}{G}\bigr)$-expansion method for Tzitzéica type nonlinear evolution equations”, Math. Comput. Modelling, 52:9–10 (2010), 1834–1845 | DOI | MR
[38] K. Khan, M. A. Akbar, “Exact and solitary wave solutions for the Tzitzéica–Dodd–Bullough and the modifed KdV–Zakharov–Kuznetsov equations usingthe modifed simple equation method”, Ain Shams Eng. J., 4:4 (2013), 903–909 | DOI
[39] H. Durur, A. Yokuş, K. A. Abro, “Computational and traveling wave analysis of Tzitzéica and Dodd–Bullough–Mikhailov equations: An exact and analytical study”, Nonlinear Eng., 10:1 (2021), 272–281 | DOI
[40] S. Akcagil, T. Aydemir, “A new application of the unified method”, New Trends Math. Sci., 6:1 (2018), 185–199 | DOI