@article{TMF_2023_216_1_a2,
author = {A. Mirza and M. ul Hassan},
title = {A supersymmetric second {Painlev\'e} hierarchy and},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {36--42},
year = {2023},
volume = {216},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a2/}
}
A. Mirza; M. ul Hassan. A supersymmetric second Painlevé hierarchy and. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 1, pp. 36-42. http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a2/
[1] J. Wess, J. Bagger, Supersymmetry and Supergravity, Princeton Series in Physics, Princeton Univ. Press, Princeton, NJ, 1992 | MR
[2] J. Wess, B. Zumino, “Supergauge transformations in four dimensions”, Nucl. Phys. B, 70:1 (1974), 39–50 | DOI | MR
[3] A. Salam, J. Strathdee, “Super-gauge transformations”, Nucl. Phys. B, 76:3 (1974), 477–482 | DOI | MR
[4] P. Di Vecchia, S. Ferrara, “Classical solutions in two-dimensional supersymmetric field theories”, Nucl. Phys. B, 130:1 (1977), 93–104 | DOI | MR
[5] M. Chaichain, P. P. Kulish, “On the method of inverse scattering problem and Bäcklund transformations for supersymmetric equations”, Phys. Lett. B, 78:4 (1978), 413–416 | DOI
[6] A. Mirza, M. ul Hassan, “Bilinearization and soliton solutions of the $N=1$ supersymmetric coupled dispersionless integrable system”, J. Nonlinear Math. Phys., 24:1 (2017), 107–115 | DOI | MR
[7] A. Mirza, M. Khassan, “O svoistvakh integriruemosti supersimmetrichnoi bezdispersionnoi integriruemoi sistemy so vzaimodeistviem”, TMF, 195:3 (2018), 381–390 | DOI | DOI | MR
[8] A. Mirza, M. Khassan, “Bilinearizatsiya i solitonnye resheniya supersimmetrichnoi mnogokomponentnoi bezdispersionnoi integriruemoi sistemy svyazannykh uravnenii”, TMF, 201:3 (2019), 361–370 | DOI | DOI | MR
[9] A. Mirza, M. Khassan, “Bilinearizatsiya i solitonnye resheniya supersimmetrichnogo svyazannogo uravneniya Kortevega–de Friza”, TMF, 202:1 (2020), 14–19 | DOI | DOI | MR
[10] P. Mathieu, “Supersymmetric extension of the Korteweg–de Vries equation”, J. Math. Phys., 29:11 (1988), 2499–2506 | DOI | MR | Zbl
[11] Yu. I. Manin, A. O. Radul, “A supersymmetric extension of the Kadomtsev–Petviashvili hierarchy”, Commun. Math. Phys., 98:1 (1985), 65–77 | DOI | MR | Zbl
[12] G. H. M. Roelofs, P. H. M. Kersten, “Supersymmetric extensions of the nonlinear Schrödinger equation: symmetries and coverings”, J. Math. Phys., 33:6 (1992), 2185–2206 | DOI | MR | Zbl
[13] C. M. Yung, “The $N=2$ supersymmetric Boussinesq hierarchies”, Phys. Lett. B, 309:1–2 (1993), 75–84 | DOI | MR
[14] A. Ramani, A. S. Carstea, B. Grammaticos, “Fermionic extensions of Painlevé equations”, Phys. Lett. A, 292:1–2 (2001), 115–119 | DOI | MR
[15] P. Painlevé, “Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme”, Acta Math., 25:1 (1902), 1–85 | DOI | MR
[16] E. L. Ains, Obyknovennye differentsialnye uravneniya, XX vek. Matematika i mekhanika, 10, Faktorial, M., 2005
[17] A. S. Carstea, “Extension of the bilinear formalism to supersymmetric KdV-type equations”, Nonlinearity, 13:5 (2000), 1645–1656 | DOI | MR
[18] A. S. Carstea, A. Ramani, B. Grammaticos, “Constructing the soliton solutions for the $N=1$ supersymmetric KdV hierarchy”, Nonlinearity, 14:5 (2001), 1419–1424 | DOI | MR
[19] B. Grammaticos, A. Ramani, A. S. Carstea, “Bilinearization and soliton solutions of the $N=1$ supersymmetric sine-Gordon equation”, J. Phys. A: Math. Gen., 34:23 (2001), 4881–4886 | DOI | MR
[20] Q. P. Liu, X.-B. Hu, M.-X. Zhang, “Supersymmetric modified Korteweg–de Vries equation: bilinear approach”, Nonlinearity, 18:4 (2005), 1597–1604 | DOI | MR
[21] Q. P. Liu, X.-X. Yang, “Supersymmetric two-boson equation: bilinearization and solutions”, Phys. Lett. A, 351:3 (2006), 131–135 | DOI | MR
[22] S. Ghosh, D. Sarma, Bilinearization of supersymmetric KP hierarchies associated with non-trivial flows, arXiv: nlin/0107019
[23] S. Ghosh, D. Sarma, “Bilinearization of $N=1$ supersymmetric modified KdV equations”, Nonlinearity, 16:2 (2002), 411–418 | DOI | MR
[24] A. Nakamura, “Bilinear structures of the Painlevé II equation and its solutions for half integer constants”, J. Phys. Soc. Japan, 61:8 (1992), 3007–3008 | DOI
[25] N. Joshi, “The second Painlevé hierarchy and the stationary KdV hierarchy”, Publ. Res. Inst. Math. Sci., 40:3 (2004), 1039–1061 | DOI | MR
[26] I. McArthur, C. M. Yung, “Hirota bilinear form for the super-KdV hierarchy”, Modern Phys. Lett. A, 8:18 (1993), 1739–1745 | DOI