On nonlinear convolution-type integral equations in the~theory
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 1, pp. 184-200
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study a class of integral equations of convolution type on the whole line with a monotone and odd nonlinearity. We prove constructive existence and absence theorems for nonnegative (nontrivial) and bounded solutions. We study the asymptotic behavior of the constructed solution at $\pm\infty$. We also prove the uniqueness of the solution in the class of nonnegative (nonzero) and bounded functions and present specific examples of this class of equations that can be applied in various fields of mathematical physics.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
monotonicity, nonlinearity, convexity
Mots-clés : kernel, nonnegative solution, convolution.
                    
                  
                
                
                Mots-clés : kernel, nonnegative solution, convolution.
@article{TMF_2023_216_1_a11,
     author = {A. Kh. Khachatryan and Kh. A. Khachatryan and H. S. Petrosyan},
     title = {On nonlinear convolution-type integral equations in the~theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {184--200},
     publisher = {mathdoc},
     volume = {216},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a11/}
}
                      
                      
                    TY - JOUR AU - A. Kh. Khachatryan AU - Kh. A. Khachatryan AU - H. S. Petrosyan TI - On nonlinear convolution-type integral equations in the~theory JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 184 EP - 200 VL - 216 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a11/ LA - ru ID - TMF_2023_216_1_a11 ER -
%0 Journal Article %A A. Kh. Khachatryan %A Kh. A. Khachatryan %A H. S. Petrosyan %T On nonlinear convolution-type integral equations in the~theory %J Teoretičeskaâ i matematičeskaâ fizika %D 2023 %P 184-200 %V 216 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a11/ %G ru %F TMF_2023_216_1_a11
A. Kh. Khachatryan; Kh. A. Khachatryan; H. S. Petrosyan. On nonlinear convolution-type integral equations in the~theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 1, pp. 184-200. http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a11/
