@article{TMF_2023_216_1_a10,
author = {A. Bouzenada and A. Boumali and F. Serdouk},
title = {Thermal properties of {the~2D} {Klein{\textendash}Gordon} oscillator in},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {169--183},
year = {2023},
volume = {216},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a10/}
}
TY - JOUR AU - A. Bouzenada AU - A. Boumali AU - F. Serdouk TI - Thermal properties of the 2D Klein–Gordon oscillator in JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2023 SP - 169 EP - 183 VL - 216 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a10/ LA - ru ID - TMF_2023_216_1_a10 ER -
A. Bouzenada; A. Boumali; F. Serdouk. Thermal properties of the 2D Klein–Gordon oscillator in. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 1, pp. 169-183. http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a10/
[1] T. W. B. Kibble, “Topology of cosmic domains and strings”, J. Phys. A: Math. Gen., 9:8 (1976), 1387–1398 | DOI
[2] R. H. Brandenberger, “Topological defects and structure formation”, Internat. J. Modern Phys. A, 09:13 (1994), 2117–2189 | DOI
[3] K. Bakke, C. Furtado, “On the Klein–Gordon oscillator subject to a Coulomb-type potential”, Ann. Phys., 355 (2015), 48–54 | DOI | MR
[4] N. Messai, A. Boumali, “Exact solutions of a two-dimensional Kemmer oscillator in the gravitational field of cosmic string”, Eur. Phys. J. Plus, 130:7 (2015), 140, 10 pp. | DOI
[5] K. Bakke, H. Mota, “Dirac oscillator in the cosmic string spacetime in the context of gravity's rainbow”, Eur. Phys. J. Plus, 133:10 (2018), 409, arXiv: 1802.08711 | DOI
[6] I. C. Fonseca, K. Bakke, “Rotating effects on an atom with a magnetic quadrupole moment confined to a quantum ring”, Eur. Phys. J. Plus, 131:3 (2016), 67 | DOI
[7] K. Bakke, “Bound states for a Coulomb-type potential induced by the interaction between a moving electric quadrupole moment and a magnetic field”, Ann. Phys., 341 (2014), 86–93 | DOI
[8] F. Ahmed, “The generalized Klein–Gordon oscillator in the background of cosmic string space-time with a linear potential in the Kaluza–Klein theory”, Eur. Phys. J. C., 80:3 (2020), 211, 12 pp. | DOI
[9] F. Ahmed, “Non-inertial effects on Klein–Gordon oscillator under a scalar potential using the Kaluza–Klein theory”, Pramana J. Phys., 95:4 (2021), 159, 7 pp. | DOI
[10] F. Ahmed, “Aharonov–Bohm effect on a generalized Klein–Gordon oscillator with uniform magnetic field in a spinning cosmic string space-time”, Europhys. Lett., 130:4 (2020), 40003, 6 pp. | DOI
[11] G. de A. Marques, V. B. Bezerra, S. G. Fernandes, “Exact solution of the Dirac equation for a Coulomb and scalar potentials in the gravitational field of a cosmic string”, Phys. Lett. A., 341:1–4 (2005), 39–47 | DOI
[12] S. Zare, H. Hassanabadi, M. de Montigny, “Non-inertial effects on a generalized DKP oscillator in a cosmic string space-time”, Gen. Rel. Grav., 52:3 (2020), 25, 20 pp. | DOI | MR
[13] M. Hosseinpour, H. Hassanabadi, M. de Montigny, “The Dirac oscillator in a spinning cosmic string spacetime”, Eur. Phys. J. C, 79:4 (2019), 311, 7 pp. | DOI
[14] M. Hosseinpour, F. M. Andrade, E. O. Silva, H. Hassanabadi, “Scattering and bound states for the Hulthén potential in a cosmic string background”, Eur. Phys. J. C, 77:5 (2017), 270, 6 pp. | DOI
[15] M. M. Cunha, E. O. Silva, “Self-adjoint extension approach to motion of spin-1/2 particle in the presence of external magnetic fields in the spinning cosmic string spacetime”, Universe, 6:11 (2020), 203, 18 pp. | DOI
[16] M. M. Cunha, H. S. Dias, E. O. Silva, “Dirac oscillator in a spinning cosmic string spacetime in external magnetic fields: Investigation of the energy spectrum and the connection with condensed matter physics”, Phys. Rev. D, 102:10 (2020), 105020, 13 pp. | DOI | MR
[17] H. Aounallah, A. Boumali, “Solutions of the Duffin–Kemmer equation in non-commutative space of cosmic string and magnetic monopole with allowance for the Aharonov–Bohm and Coulomb potentials”, Phys. Part. Nucl. Lett., 16:3 (2019), 195–205 | DOI
[18] H. Aounallah, A. R. Soares, R. L. L. Vitoria, “Scalar field and deflection of light under the effects of topologically charged Ellis–Bronnikov-type wormhole spacetime”, Eur. Phys. J. C, 80:5 (2020), 447, 6 pp. | DOI
[19] A. Vilenkin, “Gravitational field of vacuum domain walls and strings”, Phys. Rev. D, 23:4 (1981), 852–857 | DOI
[20] A. Vilenkin, “Cosmic strings and domain walls”, Phys. Rep., 121:5 (1985), 263–315 | DOI | MR
[21] A. Vilenkin, E. P. S. Shellard, Cosmic Strings and Other Topological Defects, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, Cambridge, 2001 | MR
[22] R. Durrer, M. Kunz, A. Melchiorri, “Cosmic structure formation with topological defects”, Phys. Rep., 364:1 (2002), 1–81 | DOI | MR
[23] M. Sazhin, G. Longo, M. Capaccioli et al., “CSL-1: chance projection effect or serendipitous discovery of a gravitational lens induced by a cosmic string?”, Mon. Not. R. Astron. Soc., 334:2 (2003), 353–359 | DOI
[24] M. M. Cunha, E. O. Silva, “Relativistic quantum motion of an electron in spinning cosmic string spacetime in the presence of uniform magnetic field and Aharonov–Bohm potential”, Adv. High Energy Phys., 2021 (2021), 6709140, 15 pp. | DOI | MR
[25] A. Cortijo, M. A. H. Vozmediano, “A cosmological model for corrugated graphene sheets”, Eur. Phys. J. Spec. Top., 148 (2007), 83–89 | DOI
[26] B. Chakraborty, K. S. Gupta, S. Sen, “Topology, cosmic strings and quantum dynamics – a case study with graphene”, J. Phys.: Conf. Ser., 442 (2013), 012017, 14 pp. | DOI
[27] O. P. Pandey, A study of some relativistic fields of gravitation and topological defects in general relativity, PhD thesis, Hindu Post Graduate College, Ghazipur, 2005
[28] Y. Zhu, Topological defects and structures in the early universe, PhD thesis, Princeton Univ., Princeton, NJ, 1997
[29] L. E. Pogosian, Formation and interactions of topological defects and their role in cosmology, PHD thesis, Case Western Reserve Univ., Cleveland, OH, 2001
[30] D. Itô, K. Mori, E. Carriere, “An example of dynamical systems with linear trajectory”, Nuovo. Cimento A, 51:4 (1967), 1119–1121 | DOI
[31] M. Moshinsky, A. Szczepaniak, “The Dirac oscillator”, J. Phys. A: Math. Gen., 22:17 (1989), L817–L819 | DOI | MR
[32] M. Moshinsky, Y. F. Smirnov, The Harmonic Oscillator in Modern Physics, Contemporary Concepts in Physics, 9, Harwood Academic Publ., Amsterdam, 1996
[33] A. Boumali, F. Serdouk, S. Dilmi, “Superstatistical properties of the one-dimensional Dirac oscillator”, Phys. A, 533 (2020), 124207, 13 pp. | DOI | MR
[34] H. Hassanabadi, S. S. Hosseini, A. Boumali, S. Zarrinkamar, “The statistical properties of Klein–Gordon oscillator in noncommutative space”, J. Math. Phys., 55:3 (2014), 033502, 11 pp. | DOI | MR
[35] A. Boumali, “The one-dimensional thermal properties for the relativistic harmonic oscillators”, Electronic J. Theor. Phys., 12:32 (2015), 121–130, arXiv: 1409.6205
[36] A. Boumali, “Thermodynamic properties of the graphene in a magnetic field via the two-dimensional Dirac oscillator”, Phys. Scr., 90:4 (2015), 045702 | DOI
[37] A. Boumali, N. Messai, “Klein–Gordon oscillator under a uniform magnetic field in cosmic string space-time”, Can. J. Phys., 92:11 (2014), 1460–1463 | DOI
[38] C. Quesne, V. M. Tkachuk, “Dirac oscillator with nonzero minimal uncertainty in position”, J. Phys. A: Math. Gen., 38:8 (2005), 1747–1765 | DOI | MR
[39] N. Korichi, A. Boumali, H. Hassanabadi, “Thermal properties of the one-dimensional space quantum fractional Dirac oscillator”, Phys. A, 587 (2022), 126508, 18 pp. | DOI | MR
[40] N. Korichi, A. Boumali, Y. Chargui, “Statistical properties of the 1D space fractional Klein–Gordon oscillator”, J. Low. Temp. Phys., 206:1–2 (2021), 32–50 | DOI
[41] M. H. Pacheco, R. R. Landim, C. A. S. Almeida, “One-dimensional Dirac oscillator in a thermal bath”, Phys. Lett. A, 311:2–3 (2003), 93–96 | DOI | MR
[42] M. H. Pacheco, R. V. Maluf, C. A. S. Almeida, R. R. Landim, “Three-dimensional Dirac oscillator in a thermal bath”, Europhys. Lett., 108:1 (2014), 10005, arXiv: 1406.5114 | DOI
[43] A. Boumali, H. Hassanabadi, “The thermal properties of a two-dimensional Dirac oscillator under an external magnetic field”, Eur. Phys. J. Plus, 128:10 (2013), 124, 18 pp. | DOI
[44] J. Bentez, R. P. Martnez y Romero, H. N. Núez-Yépez, A. L. Salas-Brito, “Solution and hidden supersymmetry of a Dirac oscillator”, Phys. Rev. Lett., 64:14 (1990), 1643–1645 | DOI | MR
[45] M. Moreno, A. Zentella, “Covariance, CPT and the Foldy–Wouthuysen transformation for the Dirac oscillator”, J. Phys. A: Math. Gen., 22:17 (1989), L821–L825 | DOI | MR
[46] R. P. Martínez y Romero, A. L. Salas-Brito, “Conformal invariance in a Dirac oscillator”, J. Math. Phys., 33:5 (1992), 1831–1836 | DOI | MR
[47] J. A. Franco-Villafañe, E. Sadurní, S. Barkhofen, U. Kuhl, F. Mortessagne, T. H. Seligman, “First experimental realization of the Dirac oscillator”, Phys. Rev. Lett., 111:17 (2013), 170405, 5 pp. | DOI
[48] G. E. Andrews, R. Askey, R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge Univ. Press, Cambridge, 2001 | DOI | MR
[49] T. J. Stait-Gardner, Thermodynamics in curved space, PhD thesis, Western Sydney Univ., Sydney, Australia, 2005
[50] A. Boumali, A. Hafdallah, A. Toumi, “Comment on ‘Energy profile of the one-dimensional Klein–Gordon oscillator’ ”, Phys. Scr., 84:3 (2011), 037001, 3 pp. | DOI
[51] S. A. Werner, H. Kaiser, Quantum Mechanics in Curved Space-Time, NATO Science Series B, 230, Springer, New York, 1990 | DOI
[52] S. A. Fulling, Aspects of Quantum Field Theory in Curved Space-Time, London Mathematical Society Student Texts, 17, Cambridge Univ. Press, Cambridge, 1989 | DOI | MR
[53] N. D. Birrell, P. C. W. Davies, Quantum Fields in Curved Space, Cambridge Monographs on Mathematical Physics, 7, Cambridge Univ. Press, Cambridge, 1984 | MR
[54] B. F. Schutz, A First Course in General Relativity, Cambridge Univ. Press, Cambridge, 2009
[55] K. D. Krori, P. Borgohain, P. K. Kar, Dipali Das (Kar), “Exact scalar and spinor solutions in some rotating universes”, J. Math. Phys., 29:7 (1988), 1645–1649 | DOI | MR
[56] K. D. Krori, P. Borgohain, Dipali Das (Kar), “Exact scalar and spinor solutions in the field of a stationary cosmic string”, J. Math. Phys., 35:2 (1994), 1032–1036 | DOI | MR
[57] M. M. Cunha, H. S. Dias, E. O. Silva, “Dirac oscillator in a spinning cosmic string spacetime in external magnetic fields: Investigation of the energy spectrum and the connection with condensed matter physics”, Phys. Rev. D., 102:10 (2020), 105020, 13 pp. | DOI | MR
[58] A. Boumali, N. Messai, “Exact solutions of a two-dimensional Duffin–Kemmer–Petiau oscillator subject to a Coulomb potential in the gravitational field of cosmic string”, Can. J. Phys., 95:10 (2017), 999–1004 | DOI
[59] M. L. Strekalov, “On the partition function of Morse oscillators”, Chem. Phys. Lett., 393:1–3 (2004), 192–196 ; “Energy levels and partition functions of internal rotation: Analytical approximations”, Chem. Phys., 362:1–2 (2009), 75–81 | DOI | DOI
[60] M. L. Strekalov, “An accurate closed-form expression for the partition function of Morse oscillators”, Chem. Phys. Lett., 439:1–3 (2007), 209–212 ; “An accurate closed-form expression for the rovibrational partition function of diatomic molecules”, 764 (2021), 138262 ; “Partition function of the hindered rotor: Analytical solutions”, Chem. Phys., 355:1 (2009), 62–66 | DOI | DOI | DOI
[61] S. W. Hawking, “Black hole explosions?”, Nature, 248:5443 (1974), 30–31 | DOI
[62] S. W. Hawking, “Black holes and thermodynamics”, Phys. Rev. D., 13:2 (1976), 191–197 | DOI
[63] A. Boumali, T. I. Rouabhia, “The thermal properties of the one-dimensional boson particles in Rindler spacetime”, Phys. Lett. A, 385 (2021), 126985, 8 pp. | DOI | MR
[64] J. D. Beckenstein, “Generalized second law of thermodynamics in black-hole physics”, Phys. Rev. D, 9:12 (1972), 3292–3300 | DOI
[65] D. Lynden-Bell, R. M. Lynden-Bell, “On the negative specific heat paradox”, Mon. Not. R. Astr. Soc., 181:3 (1977), 405–419 | DOI
[66] S. Zaim, H. Guelmamene, Y. Delenda, “Negative heat capacity for a Klein–Gordon oscillator in non-commutative complex phase space”, Int. J. Geom. Methods Math. Phys., 14:10 (2017), 1750141, 9 pp. | DOI | MR
[67] M. S. Cunha, C. R. Muniz, H. R. Christiansen, V. B. Bezerra, “Relativistic Landau levels in the rotating cosmic string spacetime”, Eur. Phys. J. C, 76 (2016), 512, 7 pp. | DOI