Thermal properties of the~2D Klein--Gordon oscillator in
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 1, pp. 169-183

Voir la notice de l'article provenant de la source Math-Net.Ru

This study is devoted to the thermal and magnetic properties of the $2$D Klein–Gordon oscillator in a cosmic string space–time. These properties are determined by the partition function based on the Poisson approximation. We provide analytic expressions for the partition function and analyze the entropy, specific heat, magnetization, and magnetic susceptibility of this system numerically. We focus on the effect of a cosmic string, the applied magnetic field, and the temperature on these properties. The results show a totally negative magnetization of our oscillator.
Keywords: Klein–Gordon oscillator, cosmic string, thermal properties, magnetic properties.
@article{TMF_2023_216_1_a10,
     author = {A. Bouzenada and A. Boumali and F. Serdouk},
     title = {Thermal properties of {the~2D} {Klein--Gordon} oscillator in},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {169--183},
     publisher = {mathdoc},
     volume = {216},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a10/}
}
TY  - JOUR
AU  - A. Bouzenada
AU  - A. Boumali
AU  - F. Serdouk
TI  - Thermal properties of the~2D Klein--Gordon oscillator in
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 169
EP  - 183
VL  - 216
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a10/
LA  - ru
ID  - TMF_2023_216_1_a10
ER  - 
%0 Journal Article
%A A. Bouzenada
%A A. Boumali
%A F. Serdouk
%T Thermal properties of the~2D Klein--Gordon oscillator in
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 169-183
%V 216
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a10/
%G ru
%F TMF_2023_216_1_a10
A. Bouzenada; A. Boumali; F. Serdouk. Thermal properties of the~2D Klein--Gordon oscillator in. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 1, pp. 169-183. http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a10/