Mots-clés : Jones polynomial
@article{TMF_2023_216_1_a1,
author = {E. N. Lanina and A. V. Popolitov and N. S. Tselousov},
title = {On an alternative stratification of knots},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {20--35},
year = {2023},
volume = {216},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a1/}
}
E. N. Lanina; A. V. Popolitov; N. S. Tselousov. On an alternative stratification of knots. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 1, pp. 20-35. http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a1/
[1] E. Guadagnini, M. Martellini, M. Mintchev, “Chern–Simons holonomies and the appearance of quantum groups”, Phys. Lett. B, 235:3–4 (1990), 275–281 | DOI | MR
[2] N. Yu. Reshetikhin, V. G. Turaev, “Ribbon graphs and their invariants derived from quantum groups”, Commun. Math. Phys., 127:1 (1990), 1–26 | DOI | MR | Zbl
[3] A. Morozov, A. Smirnov, “Chern–Simons teory in the temporal gauge and knot invariants through the universal quantum $R$-matrix”, Nucl. Phys. B, 835:3 (2010), 284–313, arXiv: 1001.2003 | DOI | MR | Zbl
[4] R. K. Kaul, T. R. Govindarajan, “Three-dimensional Chern–Simons theory as a theory of knots and links”, Nucl. Phys. B, 380:1–2 (1992), 293–333, arXiv: hep-th/9111063 | DOI | MR | Zbl
[5] P. Rama Devi, T. R. Govindarajan, R. K. Kaul, “Three-dimensional Chern–Simons theory as a theory of knots and links. (III). Compact semi-simple group”, Nucl. Phys. B, 402:1–2 (1993), 548–566, arXiv: ; “Knot invariants from rational conformal field theories”, Nucl. Phys. B, 422:1–2 (1994), 291–306, arXiv: hep-th/9212110hep-th/9312215 | DOI | MR | Zbl | DOI | MR | Zbl
[6] P. Ramadevi, T. Sarkar, “On link invariants and topological string amplitudes”, Nucl. Phys. B, 600:3 (2001), 487–511, arXiv: hep-th/0009188 | DOI | MR | Zbl
[7] Zodinmawia, P. Ramadevi, “$SU(N)$ quantum Racah coefficients and non-torus links”, Nucl. Phys. B, 870:1 (2013), 205–242, arXiv: ; Reformulated invariants for non-torus knots and links, arXiv: 1107.39181209.1346 | DOI | MR
[8] S. Nawata, P. Ramadevi, Zodinmawia, “Colored Kauffman homology and Super-A-polynomials”, JHEP, 01 (2014), 126, 69 pp., arXiv: 1310.2240 | DOI | MR
[9] J. Gu, H. Jockers, “A note on colored HOMFLY polynomials for hyperbolic knots from WZW models”, Commun. Math. Phys., 338:1 (2015), 393–456, arXiv: 1407.5643 | DOI | MR
[10] D. Sho, Exchange relation in $sl_3$ WZNW model in semiclassical limit, arXiv: 1408.2212
[11] A. Mironov, A. Morozov, And. Morozov, “Character expansion for HOMFLY polynomials. II. Fundamental representation. Up to five strands in braid”, JHEP, 03 (2012), 034, 33 pp., arXiv: 1112.2654 | DOI | MR
[12] H. Itoyama, A. Mironov, A. Morozov, And. Morozov, “Character expansion for HOMFLY polynomials III: All 3-strand braids in the first symmetric representation”, Internat. J. Modern Phys. A, 27:19 (2012), 1250009, 85 pp. ; “Eigenvalue hypothesis for Racah matrices and HOMFLY polynomials for 3-strand knots in any symmetric and antisymmetric representations”, 28:3–4 (2013), 1340009, 81 pp. | DOI | MR | DOI | MR
[13] A. Anokhina, A. Mironov, A. Morozov, And. Morozov, “Colored HOMFLY polynomials as multiple sums over paths or standard Young tableaux”, Adv. High Energy Phys., 2013, 931830, 12 pp. | MR | Zbl
[14] A. S. Anokhina, A. A. Morozov, “Protsedura kablirovaniya dlya raskrashennykh polinomov KhOMFLI”, TMF, 178:1 (2014), 3–68, arXiv: 1307.2216 | DOI | DOI | MR | Zbl
[15] P. Ramadevi, T. R. Govindarajan, R. K. Kaul, “Chirality of knots $9_{42}$ and $10_{71}$ and Chern–Simons theory”, Modern Phys. Lett. A, 9:34 (1994), 3205–3217 | DOI | MR
[16] S. Nawata, P. Ramadevi, Zodinmawia, “Colored HOMFLY polynomials from Chern–Simons theory”, J. Knot Theory Ramifications, 22:13 (2013), 1350078, 58 pp. | DOI | MR | Zbl
[17] D. Galakhov, D. Melnikov, A. Mironov, A. Morozov, A. Sleptsov, “Colored knot polynomials for arbitrary pretzel knots and links”, Phys. Lett. B, 743 (2015), 71–74 | DOI | MR | Zbl
[18] D. Galakhov, D. Melnikov, A. Mironov, A. Morozov, A. Sleptsov, “Knot invariants from Virasoro related representation and pretzel knots”, Nucl. Phys. B, 899 (2015), 194–228 | DOI | MR | Zbl
[19] A. Mironov, A. Morozov, A. Sleptsov, “Colored HOMFLY polynomials for the pretzel knots and links”, JHEP, 07 (2015), 069, 34 pp. | DOI | MR
[20] C. Even-Zohar, J. Hass, N. Linial, T. Nowik, “Universal knot diagrams”, J. Knot Theory Ramifications, 28:07 (2019), 1950031, 30 pp. | DOI | MR
[21] “The Knot Atlas”, http://katlas.org
[22] Yu. S. Belousov, A. V. Malyutin, Hyperbolic knots are not generic, arXiv: 1908.06187
[23] C. C. Adams, The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots, Freeman, New York, 1994 | MR
[24] C. Ernst, D. W. Sumners, “The growth of the number of prime knots”, Math. Proc. Cambridge Philos. Soc., 102:2 (1987), 303–315 | DOI | MR
[25] V. F. R. Jones, “A polynomial invariant for knots via von Neumann algebras”, Bull. Amer. Math. Soc. (N. S.), 12:1 (1985), 103–111 | DOI | MR | Zbl
[26] V. G. Turaev, “The Yang–Baxter equation and invariants of links”, New Developments in the Theory of Knots, Advanced Series in Mathematical Physics, 11, ed. T. Kohno, 1990, 175–201 | DOI
[27] V. F. R. Jones, “On knot invariants related to some statistical mechanical models”, Pacific J. Math., 137:2 (1989), 311–334 | DOI | MR | Zbl
[28] R. Bekster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR | MR | Zbl
[29] H. E. Lieb, F. Y. Wu, “Two-dimensional ferroelectric models”, Phase Transitions and Critical Phenomena, v. 11, eds. C. Domb, M. S. Green, Academic Press, London, 1972, 331–490
[30] A. Grosberg, S. Nechaev, “Algebraic invariants of knots and disordered Potts model”, J. Phys. A, 25:17 (1992), 4659–4672 | DOI | MR
[31] S. Nechaev, “Statistics of knots and entangled random walks”, Aspects topologiques de la physique en basse dimension/ Topological Aspects of Low Dimensional Systems (NATO Advanced Study Institute, Grenoble, France, Les Houches, Session LXIX, 7–31 July, 1998), Les Houches – Ecole d'Ete de Physique Theorique (LHSUMMER), 69, eds. A. Comtet, T. Jolicoeur, S. Ouvry, F. David, Springer, Berlin, 1999, 643–733 | DOI | MR
[32] M. Khovanov, “A categorification of the Jones polynomial”, Duke Math. J., 101:3 (2000), 359–426 | DOI | MR | Zbl
[33] D. Bar-Natan, “On Khovanov's categorification of the Jones polynomial”, Algebr. Geom. Topol., 2:1 (2002), 337–370 | DOI | MR | Zbl
[34] “KnotInfo: Table of Knots”, https://knotinfo.math.indiana.edu
[35] P. B. Kronheimer, T. S. Mrowka, “Khovanov homology is an unknot-detector”, Publ. Math. IHES, 113:1 (2011), 97–208 | DOI | MR