Classical $6j$-symbols of finite-dimensional representations of the~algebra $\mathfrak{gl}_3$
Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 1, pp. 3-19

Voir la notice de l'article provenant de la source Math-Net.Ru

We find anЁexplicit formula for anЁarbitrary $6j$-symbol of finite-dimensional irreducible representations of the Lie algebra $\mathfrak{gl}_3$. It is given by the result of substituting $\pm 1$s in a hypergeometric-type series similar to the $\Gamma$-series, which is the simplest several-variate hypergeometric series. We present necessary conditions for the $6j$-symbol to be nonzero.
Keywords: $6j$-symbols, hypergeometric functions.
@article{TMF_2023_216_1_a0,
     author = {D. V. Artamonov},
     title = {Classical $6j$-symbols of finite-dimensional representations of the~algebra $\mathfrak{gl}_3$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {216},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a0/}
}
TY  - JOUR
AU  - D. V. Artamonov
TI  - Classical $6j$-symbols of finite-dimensional representations of the~algebra $\mathfrak{gl}_3$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 3
EP  - 19
VL  - 216
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a0/
LA  - ru
ID  - TMF_2023_216_1_a0
ER  - 
%0 Journal Article
%A D. V. Artamonov
%T Classical $6j$-symbols of finite-dimensional representations of the~algebra $\mathfrak{gl}_3$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 3-19
%V 216
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a0/
%G ru
%F TMF_2023_216_1_a0
D. V. Artamonov. Classical $6j$-symbols of finite-dimensional representations of the~algebra $\mathfrak{gl}_3$. Teoretičeskaâ i matematičeskaâ fizika, Tome 216 (2023) no. 1, pp. 3-19. http://geodesic.mathdoc.fr/item/TMF_2023_216_1_a0/