Effect of a cloud of strings and quintessence on a phase transition of charged rotating AdS black holes
Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 3, pp. 500-517 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the phase portrait and the critical behavior in the extended phase space of one type of black hole solutions, the Kerr–Newman anti-de Sitter black hole in the presence of a spherically symmetric cloud of strings and quintessence. Regarding the cosmological constant as thermodynamic pressure, we give the essential steps to derive the expressions of thermodynamic quantities such as the Hawking temperature $T$, the Gibbs free energy $G$, and the heat capacity $C$. For this, we introduce an appropriate analytic approximation for the rotation parameter $a$ in terms of all important parameters: the cosmological constant, the entropy $S$, the parameters of quintessence and a cloud of strings, the charge $Q$, and the angular momentum $J$ of the system. The critical points are found numerically, and the $\widetilde T$$\widetilde S$, $\widetilde G$$\widetilde T$, and $\widetilde C$$\widetilde S$ diagrams are obtained in the reduced parameter space. It is shown that these diagrams are dependent on the parameters of quintessence and the cloud of strings. The analysis of these diagrams leads to the conclusion that when a cloud of strings and quintessence are surrounding a charged rotating AdS black hole, these two extra sources of energy exert no effect on the existence of the small–large black-hole phase transition. Therefore, black holes exhibit a phase transition similar to the one in a van der Waals fluid. The approach adopted here has some important consequences. On the one hand, it can be used to analyze the critical behavior of the Kerr–Newman anti-de Sitter black hole with a cloud of strings and quintessence present in spacetime of a higher dimension (larger than $4$d), and on the other hand, it may be important in investigating the phase transition for other complicated black holes.
Keywords: cloud of strings, phase diagrams, AdS black holes, critical behavior.
Mots-clés : quintessence
@article{TMF_2023_215_3_a8,
     author = {A. Daassou and R. Benbrik and H. Laassiri},
     title = {Effect of a~cloud of strings and quintessence on a~phase transition of charged rotating {AdS} black holes},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {500--517},
     year = {2023},
     volume = {215},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a8/}
}
TY  - JOUR
AU  - A. Daassou
AU  - R. Benbrik
AU  - H. Laassiri
TI  - Effect of a cloud of strings and quintessence on a phase transition of charged rotating AdS black holes
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 500
EP  - 517
VL  - 215
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a8/
LA  - ru
ID  - TMF_2023_215_3_a8
ER  - 
%0 Journal Article
%A A. Daassou
%A R. Benbrik
%A H. Laassiri
%T Effect of a cloud of strings and quintessence on a phase transition of charged rotating AdS black holes
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 500-517
%V 215
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a8/
%G ru
%F TMF_2023_215_3_a8
A. Daassou; R. Benbrik; H. Laassiri. Effect of a cloud of strings and quintessence on a phase transition of charged rotating AdS black holes. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 3, pp. 500-517. http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a8/

[1] S. Perlmutter, G. Aldering, G. Goldhaber et al., “Measurements of $\Omega$ and $\Lambda$ from 42 high-redshift supernovae”, Astrophys. J., 517:2 (1999), 565–586, arXiv: astro-ph/9812133 | DOI

[2] Z. Stuchlik, “Influence of the relict cosmological constant on accretion discs”, Modern Phys. Lett. A, 20:8 (2005), 561–575, arXiv: 0804.2266 | DOI

[3] P. J. Steinhardt, L. Wang, I. Zlatev, “Cosmological tracking solutions”, Phys. Rev., 59:12 (1999), 123504, 13 pp., arXiv: astro-ph/9812313 | DOI

[4] S. Tsujikawa, “Quintessence: a review”, Class. Quantum Grav., 30:21 (2013), 214003, 18 pp., arXiv: 1304.1961 | DOI | MR

[5] P. S. Letelier, “Clouds of strings in general relativity”, Phys. Rev. D, 20:6 (1979), 1294–1302 | DOI | MR

[6] J. M. Bardeen, B. Carter, S. W. Hawking, “The four laws of black hole mechanics”, Commun. Math. Phys., 31:2 (1973), 161–170 | DOI | MR

[7] J. D. Bekenstein, “Black holes and entropy”, Phys. Rev. D, 7:8 (1973), 2333–2346 | DOI | MR

[8] E. Witten, “Anti-de Sitter space and holography”, Adv. Theor. Math. Phys., 2:2 (1998), 253–291, arXiv: hep-th/9802150 | DOI | MR

[9] M. Cvetic, S. S. Gubser, “Phases of R-charged black holes, spinning branes and strongly coupled gauge theories”, JHEP, 04 (1999), 024, 31 pp., arXiv: hep-th/9902195 | DOI | MR

[10] J. Maldacena, “The large-$N$ limit of superconformal field theories and supergravity”, Internat. J. Theor. Phys., 38:4 (1999), 1113–1133, arXiv: hep-th/9711200 | DOI | MR

[11] R. Banerjee, D. Roychowdhury, “Thermodynamics of phase transition in higher dimensional AdS black holes”, JHEP, 11 (2011), 004, 13 pp., arXiv: 1109.2433 | DOI

[12] C. Niu, Y. Tian, X.-N. Wu, “Critical phenomena and thermodynamic geometry of Reissner–Nordström–anti-de Sitter black holes”, Phys. Rev. D, 85:2 (2012), 024017, 8 pp., arXiv: 1104.3066 | DOI

[13] M. M. Caldarelli, G. Cognola, D. Klemm, “Thermodynamics of Kerr–Newman–AdS black holes and conformal field theories”, Class. Quantum Grav., 17:2 (2000), 399–420, arXiv: hep-th/9908022 | DOI | MR

[14] Y.-D. Tsai, X. N. Wu, Y. Yang, “Phase structure of Kerr–AdS black hole”, Phys. Rev. D, 85:4 (2012), 044005, 9 pp., arXiv: 1104.0502 | DOI

[15] D. Kastor, S. Ray, J. Traschen, “Enthalpy and the mechanics of AdS black holes”, Class. Quantum Grav., 26:19 (2009), 195011, 17 pp., arXiv: 0904.2765 | DOI

[16] B. P. Dolan, “The cosmological constant and the black hole equation of state”, Class. Quantum Grav., 28:12 (2011), 125020, 13 pp., arXiv: 1008.5023 | DOI | MR

[17] D. Kubizňák, R. B. Mann, “$P$–$V$ criticality of charged AdS black holes”, JHEP, 07 (2012), 033, 24 pp., arXiv: 1205.0559 | DOI | MR

[18] S. H. Hendi, M. H. Vahidinia, “Extended phase space thermodynamics and $P$–$V$ criticality of black holes with nonlinear source”, Phys. Rev. D, 88:8 (2013), 084045, 11 pp., arXiv: 1212.6128 | DOI

[19] S.-B. Chen, X.-F. Liu, C.-Q. Liu, “$P$–$V$ criticality of AdS black hole in $f(R)$ gravity”, Chinese Phys. Lett., 30:6 (2013), 060401, arXiv: 1301.3234 | DOI

[20] R. Zhao, H.-H. Zhao, M.-S. Ma, L.-C. Zhang, “On the critical phenomena and thermodynamics of charged topological dilaton AdS black holes”, Eur. Phys. J. C, 73:12 (2013), 2645, 10 pp. | DOI

[21] R.-G. Cai, L.-M. Cao, L. Li, R.-Q. Yang, “$P$–$V$ criticality in the extended phase space of Gauss–Bonnet black holes in AdS space”, JHEP, 09 (2013), 005, 22 pp. | DOI

[22] E. Spallucci, A. Smailagic, “Maxwell's equal-area law for charged Anti-de Sitter black holes”, Phys. Lett. B, 723:4–5 (2013), 436–441, arXiv: 1305.3379 | DOI | MR

[23] E. Spallucci, A. Smailagic, “Maxwell's equal area law and the Hawking–Page phase transition”, J. Grav., 2013 (2013), 525696, 7 pp., arXiv: 1310.2186 | DOI

[24] W. Xu, H. Xu, L. Zhao, “Gauss–Bonnet coupling constant as a free thermodynamical variable and the associated criticality”, Eur. Phys. J. C, 74:7 (2014), 2970, 13 pp., arXiv: 1311.3053 | DOI

[25] D.-C. Zou, S.-J. Zhang, B. Wang, “Critical behavior of Born–Infeld AdS black holes in the extended phase space thermodynamics”, Phys. Rev. D, 89:4 (2014), 044002, 13 pp., arXiv: 1311.7299 | DOI

[26] J.-X. Mo, W.-B. Liu, “$P$–$V$ criticality of topological black holes in Lovelock–Born–Infeld gravity”, Eur. Phys. J. C, 74:4 (2014), 2836, 12 pp., arXiv: 1401.0785 | DOI

[27] J.-X. Mo, W.-B. Liu, “Ehrenfest scheme for $P$–$V$ criticality of higher dimensional charged black holes, rotating black holes and Gauss–Bonnet AdS black holes”, Phys. Rev. D, 89:8 (2014), 084057, 10 pp., arXiv: 1404.3872 | DOI

[28] B. P. Dolan, A. Kostouki, D. Kubiznak, R. B. Mann, “Isolated critical point from Lovelock gravity”, Class. Quantum Grav., 31:24 (2014), 242001, 17 pp., arXiv: 1407.4783 | DOI | MR

[29] H. Xu, W. Xu, L. Zhao, “Extended phase space thermodynamics for third order Lovelock black holes in diverse dimensions”, Eur. Phys. J. C, 74:9 (2014), 3074, 15 pp. | DOI

[30] J. Xu, L.-M. Cao, Y.-P. Hu, “$P$–$V$ criticality in the extended phase space of black holes in massive gravity”, Phys. Rev. D, 91:12 (2015), 124033, 10 pp. | DOI

[31] B. P. Dolan, “Black holes and Boyle's law – The thermodynamics of the cosmological constant”, Modern Phys. Lett. A, 30:3–4 (2015), 1540002, 20 pp., arXiv: 1408.4023 | DOI | MR

[32] J.-L. Zhang, R.-G. Cai, H. Yu, “Phase transition and thermodynamical geometry of Reissner—Nordström–AdS black holes in extended phase space”, Phys. Rev. D, 91:4 (2015), 044028, 14 pp., arXiv: 1502.01428 | DOI

[33] S.-W. Wei, Y.-X. Liu, “Clapeyron equations and fitting formula of the coexistence curve in the extended phase space of charged AdS black holes”, Phys. Rev. D, 91:4 (2015), 044018, 10 pp., arXiv: 1411.5749 | DOI

[34] S.-W. Wei, P. Cheng, Y.-X. Liu, “Analytical and exact critical phenomena of $d$-dimensional singly spinning Kerr–AdS black holes”, Phys. Rev. D, 93:8 (2016), 084015, 13 pp. | DOI | MR

[35] J. M. Toledo, V. B. Bezerra, “Kerr–Newman–AdS black hole with quintessence and cloud of strings”, Gen. Relativ. Gravit., 52:4 (2020), 34, 21 pp. | DOI | MR

[36] R. R. Caldwell, R. Dave, P. J. Steinhardt, “Cosmological imprint of an energy component with general equation of state”, Phys. Rev. Lett., 80:8 (1998), 1582–1585, arXiv: astro-ph/9708069 | DOI

[37] Z. Xu, J. Wang, “Kerr–Newman–AdS black hole in quintessential dark energy”, Phys. Rev. D, 95:6 (2017), 064015, 10 pp., arXiv: 1609.02045 | DOI | MR

[38] S. W. Hawking, “Black hole explosions?”, Nature, 248:5443 (1974), 30–31 | DOI

[39] S. W. Hawking, “Black holes and thermodynamics”, Phys. Rev. D, 13:2 (1976), 191–197 | DOI

[40] S. Gunasekaran, D. Kubiznak, R. B. Mann, “Extended phase space thermodynamics for charged and rotating black holes and Born–Infeld vacuum polarization”, JHEP, 11 (2012), 110, arXiv: 1208.6251 | DOI

[41] P. Cheng, S.-W. Wei, Y.-X. Liu, “Critical phenomena in the extended phase space of Kerr–Newman–AdS black holes”, Phys. Rev. D, 94:2 (2016), 024025, 13 pp., arXiv: 1603.08694 | DOI | MR

[42] A. R. King, U. Kolb, “The evolution of black hole mass and angular momentum”, Mon. Not. R. Astron. Soc., 305:3 (1999), 654–660, arXiv: astro-ph/9901296 | DOI