@article{TMF_2023_215_3_a7,
author = {Yu. G. Ignatev},
title = {Evolution of spherical perturbations in the~cosmological},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {465--499},
year = {2023},
volume = {215},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a7/}
}
Yu. G. Ignatev. Evolution of spherical perturbations in the cosmological. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 3, pp. 465-499. http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a7/
[1] Yu. G. Ignat'ev, “Gravitational-scalar instability of a two-component degenerate system of scalarly charged fermions with asymmetric Higgs interaction”, Gravit. Cosmol., 28:1 (2022), 25–36, arXiv: 2203.11948 | DOI | MR
[2] Yu. G. Ignat'ev, “Single-field model of gravitational-scalar instability. I. Evolution of perturbations”, Gravit. Cosmol., 28:3 (2022), 275–291, arXiv: 2207.05066 | DOI | MR
[3] Yu. G. Ignat'ev, “Single-field model of gravitational-scalar instability. II. Black hole formation”, Gravit. Cosmol., 28:4 (2022), 375–381, arXiv: 2211.14507 | DOI | MR
[4] Yu. G. Ignat'ev, “Two-field model of gravitational-scalar instability and the formation of supermassive black holes in the early Universe”, Gravit. Cosmol., 29:1 (2023) (to appear)
[5] Q. Zhu, Y. Li, Y. Li, M. Maji, H. Yajima, R. Schneider, L. Hernquist, The formation of the first quasars. I. The black hole seeds, accretion and feedback models, arXiv: 2012.01458
[6] S. Gillessen, F. Eisenhauer, S. Trippe, T. Alexander, R. Genzel, F. Martins, T. Ott, “Monitoring stellar orbits around the massive black hole in the Galactic center”, Astrophys. J., 692 (2009), 1075, arXiv: 0810.4674 | DOI
[7] S. S. Doeleman, J. Weintroub, A. E. E. Rogers et al., “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre”, Nature, 455:7209 (2008), 78–80, arXiv: 0809.2442 | DOI
[8] X. Fan, A. Barth, E. Banados et al., “The First Luminous Quasars and Their Host Galaxies”, Bulletin of the AAS, 51:3 (2019), 6 pp. https://baas.aas.org/pub/2020n3i121
[9] B. Trakhtenbrot, What do observations tell us about the highest-redshift supermassive black holes?, arXiv: 2002.00972
[10] L. A. Ureña-López, A. R. Liddle, “Supermassive black holes in scalar field galaxy halos”, Phys. Rev. D, 66:8 (2002), 083005, 5 pp., arXiv: astro-ph/0207493 | DOI
[11] P. V. P. Cunha, C. A. R. Herdeiro, E. Radu, H. F. Rúnarsson, “Shadows of Kerr black holes with and without scalar hair”, Internat. J. Modern Phys. D, 25:9 (2016), 1641021, 13 pp. | DOI | MR
[12] P. Brax, P. Valageas, J. A. R. Cembranos, “Fate of scalar dark matter solitons around supermassive galactic black holes”, Phys. Rev. D, 101:2 (2020), 023521, 18 pp., arXiv: 1909.02614 | DOI | MR
[13] Yu. G. Ignatev, D. Yu. Ignatev, “Kosmologicheskie modeli na osnove statisticheskoi sistemy skalyarno zaryazhennykh vyrozhdennykh fermionov i asimmetrichnogo skalyarnogo dubleta Khiggsa”, TMF, 209:1 (2021), 142–183, arXiv: 2111.00492 | DOI | DOI | MR
[14] Yu. G. Ignatev, “Relyativistskii kanonicheskii formalizm i invariantnaya odnochastichnaya funktsiya raspredeleniya”, Izv. vuzov. Fizika., 26:8 (1983), 15–19 | MR
[15] Yu. G. Ignat'ev, A. A. Popov, “Kinetic equations for ultrarelativistic particles in a Robertson–Walker universy and isotropization of relict radiation by gravitational interactions”, Astrophys. Space Sci., 163 (1990), 153–174, arXiv: 1101.4303 | DOI
[16] Yu. G. Ignat'ev, A. A. Popov, “Spherically symmetric perturbation of a ultrarelativistic fluid in a homogeneous and isotropic universe”, Phys. Lett. A., 220:1–3 (1996), 22–29, arXiv: gr-qc/9604028 | DOI | MR
[17] Yu. G. Ignatev, N. Elmakhi, “Dinamicheskaya model sfericheskikh vozmuschenii vo vselennoi Fridmana. I”, Izv. vuzov. Fizika., 51:1 (2008), 66–76, arXiv: 1101.1414 | DOI | MR
[18] Yu. G. Ignatev, N. Elmakhi, “Dinamicheskaya model sfericheskikh vozmuschenii vo vselennoi Fridmana. II. Zapazdyvayuschie resheniya dlya ultrarelyativistskogo uravneniya sostoyaniya”, Izv. vuzov. Fizika., 51:7 (2008), 69–76, arXiv: 1101.1544 | DOI
[19] Yu. G. Ignatev, N. Elmakhi, “Dinamicheskaya model sfericheskikh vozmuschenii vo vselennoi Fridmana. III. Avtomodelnye resheniya”, Izv. vuzov. Fizika., 52:1 (2009), 15–22, arXiv: 1101.1558 | DOI
[20] Yu. G. Ignatev, “Gravitatsionno-skalyarnaya neustoichivost kosmologicheskoi modeli na osnove dvukhkomponentnoi statisticheskoi sistemy s asimmetrichnym skalyarnym Khiggsovym vzaimodeistviem fermionov”, Prostranstvo, vremya i fundamentalnye vzaimodeistviya, 38 (2022), 64–89
[21] Yu. G. Ignatev, “Gravitatsionno-skalyarnaya neustoichivost kosmologicheskoi modeli na osnove dvukhkomponentnoi sistemy vyrozhdennykh skalyarno zaryazhennykh fermionov s asimmetrichnym Khiggsovym vzaimodeistviem. I. Uravneniya dlya vozmuschenii”, Izv. vuzov. Fizika., 9 (2022), 68–77, arXiv: 2302.03666 | DOI | DOI
[22] Yu. G. Ignatev, “Gravitatsionno-skalyarnaya neustoichivost kosmologicheskoi modeli na osnove dvukhkomponentnoi sistemy vyrozhdennykh skalyarno zaryazhennykh fermionov s asimmetrichnym Khiggsovym vzaimodeistviem. II. VKB-priblizhenie”, Izv. vuzov. Fizika, 9 (2022), 78–91 | DOI
[23] Yu. G. Ignat'ev, A. A. Agathonov, D. Yu. Ignatyev, “Cosmological evolution of a statistical system of degenerate scalar-charged fermions with an asymmetric scalar doublet. I. Two-component system of assorted charges”, Gravit. Cosmol., 27:4 (2021), 338–349, arXiv: 2203.11946 | DOI | MR
[24] Yu. G. Ignat'ev, A. A. Agathonov, D. Yu. Ignatyev, “Cosmological evolution of a statistical system of degenerate scalarly charged fermions with an asymmetric scalar doublet. II. One-component system of doubly charged fermions”, Gravit. Cosmol., 28:1 (2022), 10–24, arXiv: 2203.12766 | DOI | MR
[25] Yu. Ignat'ev, A. Agathonov, M. Mikhailov, D. Ignatyev, “Cosmological evolution of statistical system of scalar charged particles”, Astrophys. Space Sci., 357 (2015), 61, arXiv: 1411.6244 | DOI
[26] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, Fizmatlit, M., 2003 | MR | MR | Zbl
[27] Yu. G. Ignat'ev, “Stability of the cosmological system of degenerated scalarly charged fermions and Higgs scalar fields. I. Mathematical model of linear plane perturbations”, Gravit. Cosmol., 27:1 (2021), 30–35, arXiv: 2103.13866 | DOI | MR
[28] Yu. G. Ignat'ev, “The self-consistent field method and the macroscopic universe consisting of a fluid and black holes”, Gravit. Cosmol., 25:4 (2019), 354–361 | DOI | MR
[29] J. L. Sing, Relativity: The General Theory, North-Holland, Amsterdam, 1960 | MR
[30] D. S. Gorbunov, V. A. Rubakov, Vvedenie v teoriyu rannei Vselennoi. Kosmologicheskie vozmuscheniya. Inflyatsionnaya teoriya, KRASAND, M., 2010 | DOI
[31] Yu. G. Ignatev, I. A. Kokh, “Polnaya kosmologicheskaya model na osnove asimmetrichnogo skalyarnogo dubleta Khiggsa”, TMF, 207:1 (2021), 133–176 | DOI | DOI | MR