Evolution of spherical perturbations in the cosmological
Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 3, pp. 465-499
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A mathematical model is constructed for the evolution of spherical perturbations in a cosmological one-component statistical system of completely degenerate scalar-charged fermions with a scalar Higgs coupling. A complete system of self-consistent equations for the evolution of small spherical perturbations is constructed. Singular parts in perturbation modes corresponding to a point-like mass and scalar charge are singled out. We obtain systems of ordinary differential equations for the evolution of the mass and charge of a singular source and systems of partial differential equations for the evolution of nonsingular parts of perturbations. The coefficients of partial differential equations are described by solutions of evolutionary equations for mass and charge. The problem of spatially localized perturbations for solutions that are polynomial in the radial coordinate is reduced to a recurrent system of ordinary linear differential equations for the coefficients of these polynomials. The properties of solutions are studied in the case of cubic polynomials; in particular, it is shown that the radii of localization of gravitational and scalar perturbations coincide and evolve in proportion to the scale factor. The evolution of perturbations is modeled numerically, which in particular confirms the exponential growth of the central mass of the perturbation, and also reveals the oscillatory nature of the evolution of the scalar charge.
Keywords: scalar-charged plasma, cosmological model, scalar Higgs field, gravitational instability, spherical perturbation.
@article{TMF_2023_215_3_a7,
     author = {Yu. G. Ignatev},
     title = {Evolution of spherical perturbations in the~cosmological},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {465--499},
     year = {2023},
     volume = {215},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a7/}
}
TY  - JOUR
AU  - Yu. G. Ignatev
TI  - Evolution of spherical perturbations in the cosmological
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 465
EP  - 499
VL  - 215
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a7/
LA  - ru
ID  - TMF_2023_215_3_a7
ER  - 
%0 Journal Article
%A Yu. G. Ignatev
%T Evolution of spherical perturbations in the cosmological
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 465-499
%V 215
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a7/
%G ru
%F TMF_2023_215_3_a7
Yu. G. Ignatev. Evolution of spherical perturbations in the cosmological. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 3, pp. 465-499. http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a7/

[1] Yu. G. Ignat'ev, “Gravitational-scalar instability of a two-component degenerate system of scalarly charged fermions with asymmetric Higgs interaction”, Gravit. Cosmol., 28:1 (2022), 25–36, arXiv: 2203.11948 | DOI | MR

[2] Yu. G. Ignat'ev, “Single-field model of gravitational-scalar instability. I. Evolution of perturbations”, Gravit. Cosmol., 28:3 (2022), 275–291, arXiv: 2207.05066 | DOI | MR

[3] Yu. G. Ignat'ev, “Single-field model of gravitational-scalar instability. II. Black hole formation”, Gravit. Cosmol., 28:4 (2022), 375–381, arXiv: 2211.14507 | DOI | MR

[4] Yu. G. Ignat'ev, “Two-field model of gravitational-scalar instability and the formation of supermassive black holes in the early Universe”, Gravit. Cosmol., 29:1 (2023) (to appear)

[5] Q. Zhu, Y. Li, Y. Li, M. Maji, H. Yajima, R. Schneider, L. Hernquist, The formation of the first quasars. I. The black hole seeds, accretion and feedback models, arXiv: 2012.01458

[6] S. Gillessen, F. Eisenhauer, S. Trippe, T. Alexander, R. Genzel, F. Martins, T. Ott, “Monitoring stellar orbits around the massive black hole in the Galactic center”, Astrophys. J., 692 (2009), 1075, arXiv: 0810.4674 | DOI

[7] S. S. Doeleman, J. Weintroub, A. E. E. Rogers et al., “Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre”, Nature, 455:7209 (2008), 78–80, arXiv: 0809.2442 | DOI

[8] X. Fan, A. Barth, E. Banados et al., “The First Luminous Quasars and Their Host Galaxies”, Bulletin of the AAS, 51:3 (2019), 6 pp. https://baas.aas.org/pub/2020n3i121

[9] B. Trakhtenbrot, What do observations tell us about the highest-redshift supermassive black holes?, arXiv: 2002.00972

[10] L. A. Ureña-López, A. R. Liddle, “Supermassive black holes in scalar field galaxy halos”, Phys. Rev. D, 66:8 (2002), 083005, 5 pp., arXiv: astro-ph/0207493 | DOI

[11] P. V. P. Cunha, C. A. R. Herdeiro, E. Radu, H. F. Rúnarsson, “Shadows of Kerr black holes with and without scalar hair”, Internat. J. Modern Phys. D, 25:9 (2016), 1641021, 13 pp. | DOI | MR

[12] P. Brax, P. Valageas, J. A. R. Cembranos, “Fate of scalar dark matter solitons around supermassive galactic black holes”, Phys. Rev. D, 101:2 (2020), 023521, 18 pp., arXiv: 1909.02614 | DOI | MR

[13] Yu. G. Ignatev, D. Yu. Ignatev, “Kosmologicheskie modeli na osnove statisticheskoi sistemy skalyarno zaryazhennykh vyrozhdennykh fermionov i asimmetrichnogo skalyarnogo dubleta Khiggsa”, TMF, 209:1 (2021), 142–183, arXiv: 2111.00492 | DOI | DOI | MR

[14] Yu. G. Ignatev, “Relyativistskii kanonicheskii formalizm i invariantnaya odnochastichnaya funktsiya raspredeleniya”, Izv. vuzov. Fizika., 26:8 (1983), 15–19 | MR

[15] Yu. G. Ignat'ev, A. A. Popov, “Kinetic equations for ultrarelativistic particles in a Robertson–Walker universy and isotropization of relict radiation by gravitational interactions”, Astrophys. Space Sci., 163 (1990), 153–174, arXiv: 1101.4303 | DOI

[16] Yu. G. Ignat'ev, A. A. Popov, “Spherically symmetric perturbation of a ultrarelativistic fluid in a homogeneous and isotropic universe”, Phys. Lett. A., 220:1–3 (1996), 22–29, arXiv: gr-qc/9604028 | DOI | MR

[17] Yu. G. Ignatev, N. Elmakhi, “Dinamicheskaya model sfericheskikh vozmuschenii vo vselennoi Fridmana. I”, Izv. vuzov. Fizika., 51:1 (2008), 66–76, arXiv: 1101.1414 | DOI | MR

[18] Yu. G. Ignatev, N. Elmakhi, “Dinamicheskaya model sfericheskikh vozmuschenii vo vselennoi Fridmana. II. Zapazdyvayuschie resheniya dlya ultrarelyativistskogo uravneniya sostoyaniya”, Izv. vuzov. Fizika., 51:7 (2008), 69–76, arXiv: 1101.1544 | DOI

[19] Yu. G. Ignatev, N. Elmakhi, “Dinamicheskaya model sfericheskikh vozmuschenii vo vselennoi Fridmana. III. Avtomodelnye resheniya”, Izv. vuzov. Fizika., 52:1 (2009), 15–22, arXiv: 1101.1558 | DOI

[20] Yu. G. Ignatev, “Gravitatsionno-skalyarnaya neustoichivost kosmologicheskoi modeli na osnove dvukhkomponentnoi statisticheskoi sistemy s asimmetrichnym skalyarnym Khiggsovym vzaimodeistviem fermionov”, Prostranstvo, vremya i fundamentalnye vzaimodeistviya, 38 (2022), 64–89

[21] Yu. G. Ignatev, “Gravitatsionno-skalyarnaya neustoichivost kosmologicheskoi modeli na osnove dvukhkomponentnoi sistemy vyrozhdennykh skalyarno zaryazhennykh fermionov s asimmetrichnym Khiggsovym vzaimodeistviem. I. Uravneniya dlya vozmuschenii”, Izv. vuzov. Fizika., 9 (2022), 68–77, arXiv: 2302.03666 | DOI | DOI

[22] Yu. G. Ignatev, “Gravitatsionno-skalyarnaya neustoichivost kosmologicheskoi modeli na osnove dvukhkomponentnoi sistemy vyrozhdennykh skalyarno zaryazhennykh fermionov s asimmetrichnym Khiggsovym vzaimodeistviem. II. VKB-priblizhenie”, Izv. vuzov. Fizika, 9 (2022), 78–91 | DOI

[23] Yu. G. Ignat'ev, A. A. Agathonov, D. Yu. Ignatyev, “Cosmological evolution of a statistical system of degenerate scalar-charged fermions with an asymmetric scalar doublet. I. Two-component system of assorted charges”, Gravit. Cosmol., 27:4 (2021), 338–349, arXiv: 2203.11946 | DOI | MR

[24] Yu. G. Ignat'ev, A. A. Agathonov, D. Yu. Ignatyev, “Cosmological evolution of a statistical system of degenerate scalarly charged fermions with an asymmetric scalar doublet. II. One-component system of doubly charged fermions”, Gravit. Cosmol., 28:1 (2022), 10–24, arXiv: 2203.12766 | DOI | MR

[25] Yu. Ignat'ev, A. Agathonov, M. Mikhailov, D. Ignatyev, “Cosmological evolution of statistical system of scalar charged particles”, Astrophys. Space Sci., 357 (2015), 61, arXiv: 1411.6244 | DOI

[26] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, Fizmatlit, M., 2003 | MR | MR | Zbl

[27] Yu. G. Ignat'ev, “Stability of the cosmological system of degenerated scalarly charged fermions and Higgs scalar fields. I. Mathematical model of linear plane perturbations”, Gravit. Cosmol., 27:1 (2021), 30–35, arXiv: 2103.13866 | DOI | MR

[28] Yu. G. Ignat'ev, “The self-consistent field method and the macroscopic universe consisting of a fluid and black holes”, Gravit. Cosmol., 25:4 (2019), 354–361 | DOI | MR

[29] J. L. Sing, Relativity: The General Theory, North-Holland, Amsterdam, 1960 | MR

[30] D. S. Gorbunov, V. A. Rubakov, Vvedenie v teoriyu rannei Vselennoi. Kosmologicheskie vozmuscheniya. Inflyatsionnaya teoriya, KRASAND, M., 2010 | DOI

[31] Yu. G. Ignatev, I. A. Kokh, “Polnaya kosmologicheskaya model na osnove asimmetrichnogo skalyarnogo dubleta Khiggsa”, TMF, 207:1 (2021), 133–176 | DOI | DOI | MR