A~type of multicomponent nonisospectral generalized nonlinear Schr\"{o}dinger hierarchies
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 3, pp. 437-464
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We introduce a Lie algebra $A_1$ with an arbitrary constant $\alpha$ that can be used to solve nonisospectral problems. For a given higher-dimensional Lie algebra, we introduce two new classes of higher-dimensional Lie algebras extended by $A_1$. By solving the extended nonisospectral zero-curvature equations that correspond to nonisospectral problems, we derive several multicomponent nonisospectral hierarchies. For one of them, with the aid of the $Z^\varepsilon_N$-trace identity and given the Lax pairs, we obtain the bi-Hamilton structures.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
multicomponent nonisospectral hierarchy, $Z^\varepsilon_N$-trace identity, bi-Hamiltonian structure, nonisospectral problem.
                    
                  
                
                
                @article{TMF_2023_215_3_a6,
     author = {Jianduo Yu and HaiFeng Wang and Chuanzhong Li},
     title = {A~type of multicomponent nonisospectral generalized nonlinear {Schr\"{o}dinger} hierarchies},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {437--464},
     publisher = {mathdoc},
     volume = {215},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a6/}
}
                      
                      
                    TY  - JOUR
AU  - Jianduo Yu
AU  - HaiFeng Wang
AU  - Chuanzhong Li
TI  - A~type of multicomponent nonisospectral generalized nonlinear Schr\"{o}dinger hierarchies
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 437
EP  - 464
VL  - 215
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a6/
LA  - ru
ID  - TMF_2023_215_3_a6
ER  - 
                      
                      
                    %0 Journal Article
%A Jianduo Yu
%A HaiFeng Wang
%A Chuanzhong Li
%T A~type of multicomponent nonisospectral generalized nonlinear Schr\"{o}dinger hierarchies
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 437-464
%V 215
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a6/
%G ru
%F TMF_2023_215_3_a6
                      
                      
                    Jianduo Yu; HaiFeng Wang; Chuanzhong Li. A~type of multicomponent nonisospectral generalized nonlinear Schr\"{o}dinger hierarchies. Teoretičeskaâ i matematičeskaâ fizika, Tome 215 (2023) no. 3, pp. 437-464. http://geodesic.mathdoc.fr/item/TMF_2023_215_3_a6/
                  
                